
CS112 - INTRODUCTION TO PROGRAMMING

Programming Project #2 - Due Monday, March 10, at the start of class

Purpose: To give you experience with creating and using a class

Introduction

In Lab 6, you created a Clock class. This project involves using several instances of it in a
program, together with making significant improvements to its appearance and functioning.

What you will do for this project is to create a program that - as a bare minimum - displays several
clocks that continually display the correct time in different time zones. Full credit will come from
improving the appearance of the clocks and/or adding the ability to display the time in digital form
as well as analog form.

Your program will consist of two classes: a main class (Project2) and a Clock class. The latter
will be based on the class you created in Lab 6, but with various improvements, as discussed below.

Because your main class will be derived from objectdraw.WindowController, which is, in turn a
subclass of java.Applet, supplying a suitable .html file and a downloadable copy of the
obejctdraw library will make it viewable on other computers. After the projects are completed, your
program will be posted on the department’s web server so that fellow students, parents, friends, etc.
can see what you’ve created as well. You may also enjoy looking at versions of a similar project
created by students in previous years, linked off the course home page -though you should bear in
mind that the project requirements in previous years were significantly different.

Evaluation
Your grade on this project will be based on two criteria:

1. Correct, operation and neat, aesthetically pleasing appearance. (maximum 50-80 points,
depending on options chosen)

2. Good methodology, including use of comments, appropriate variables and symbolic constants,,
meaningful names, and good use of white space to aid readability (indentation and blank lines).
(maximum 20 points)

There will not be a project quiz.
A blank project cover sheet is attached and should be stapled to the front of your project.

Requirements

Bare Minimum Requirements - maximum of 45 points for correct operation and aesthetic
appearance. (Note: you will have to do more than just this to even earn a “C” level grade on the
project!)

Fulfill the following requirements:

• Your program must display a minimum of four different clocks - though it can display more if
you wish. One of these must be significantly bigger than the others. (E.g. perhaps twice as big,
though aesthetics may dictate using a somewhat smaller or larger size).

1

• Each clock should display the current time in a different time zone, and should be labeled in
some fashion with the name of its time zone. You will probably want the larger clock to display
the local time zone (Eastern), though you could use it to display some other zone if you prefer
(e.g. the zone of your home town.) All clocks must update themselves continually.
 The following shows what a minimally-satisfactory fulfillment of these requirements might
look like. [See discussion below under “Implementation Notes” for suggestions on how to
do this.]

2

Ways of Earning Additional Points toward Full Credit

Each of the following is worth a maximum additional points as specified. Credit will be based on
the aesthetics and correct operation of the finished product. It is more beneficial to do what you do
well than to do lots of things sloppily. Full credit for each item will require doing it very well, with
partial credit awarded for a reasonable effort.

• Add “hash-marks” around the face of the clock (Use some of the “border” area.) (up to 5 or 10
points, depending on method chosen.)

• Add numbers around the face of the clock (Use some of the “border” area.) (up to 5 points)
• Improve the appearance of the clock hands. (up to 5 or 10 points, depending on method chosen)
• Display the time in digital form as well as analog form. This can be combined with the time zone

label if you wish. (The code to update the digital time must be included in the class's
updateTime() method, rather than being a separate method.) (up to 5 points)

• Other creative possibilities of your own devising (up to 5 points)

The following shows what possible approaches to fulfilling the first four of these might look like -
but please don't view them as something to be slavishly imitated. No examples are provided for
“other creative possibilities”, but you may get ideas by looking at projects from previous years.

 (5 points for hashmarks and 5 for hands) (10 points for hashmarks and 10 for hands)

3

Some things to note in the above

• “Hash-marks” are shown at all twelve hour positions, in the 5 point version, with shorter
intermediate marks for the minute/second positions between in the 10 point version. [The hash
marks at the hour positions in the example are short lines, and the intermediate marks are dots
(small filled circles), but you can use lines of differing lengths or colors or dots of different sizes
or colors for both if you prefer - just so it is possible to visually distinguish the two kinds of
mark.] Of course, there must not be an intermediate mark at the twelve hour positions. It is not
required that the size of these scale with the clock diameter - they can be a constant size regardless
of diameter. [See discussion below under “Implementation Notes” for suggestions on sizes.]

• All twelve hours positions are numbered, and the position of the numbers relative to the clock face
is uniform. This is required for full credit, with lesser credit possible for fewer marks and/or for
spacing that is not as uniform. [See discussion below under “Implementation Notes” for
suggestions on how to do this.] Once again, it is not required that the size of the numbers or
spacing between the numbers and the clock face scale with the clock diameter.

• Two approaches are shown for improving the appearance of the hands. The first approach just
adds dots at the ends of the hands; the second draws the hands as filled arcs. The second is much
harder to do, but is worth 10 points, whereas the first approach is worth 5. [See discussion
below under “Implementation Notes” for suggestions on how to do the filled arcs.]

• The digital time is centered beneath the clock face, and times are formatted correctly - e.g.
1:03:04 would be displayed as 1:03:04 not 1:3:4 or 01:03:04. Of course, a number less than 1 or
greater than 12 will never appear as an hour! [See discussion below under “Implementation
Notes” for suggestions on how to center the digital time.] Once again you are not required to
make the size of the text or the spacing between the text and the clock face scale with clock
diameter. (The example does not show time zone labels in connection with the digital time, but
these can be combined - so that the text says something like “4:18:42 PM Eastern” if you wish.)

Implementation Notes:

1. To start the project, copy the Project2 folder from the common volume to your server volume.
This folder contains a BlueJ project, a “starter” version of the main class (Project2), and a
modified version of the tester you used for Lab 6. You will also need to copy the Clock class
you created in lab into this folder.

2. Your visual display will need to be bigger than the default size objectdraw uses. You should
change the symbolic constants WINDOW_WIDTH and WINDOW_HEIGHT, defined in the main class,
to suitable values.

3. Because the main class contains a main() method, it can be run like any other main program,
but it can also be run as a Java applet by selecting “Run Applet” when you control-click the
class icon. BlueJ automatically creates an html file for you when you do this; however, you
might want to create your own version for aesthetic reasons. If you do so, give it a name
other than the one BlueJ uses (Project2.html) or the version you created will be deleted
when BlueJ creates its own. To test your project as an applet, either chose “Run Applet” or
drag your own html file to the Safari icon on the Dock. Note: you must quit out of the
browser (not just close the window) each time you change your program, since the
browser will not reload your changed code if it has already loaded a version of your
code.

4

4. Information on the various time zones in North America, including difference with UTC, can be
found at http://www.timeanddate.com/library/abbreviations/timezones/na/. You
don’t need to worry about daylight savings time - after all, it’s still winter!

5. The following approach to handling multiple time zones is suggested:
a. Add two parameters to the clock constructor - a String that specifies the time zone name and
 an int that specifies the difference in milliseconds between this zone and UTC. (For time
 zones in North America, this will always be a negative number.)

b. In the updateTime() method, add the UTC offset to the time passed as a parameter or
 obtained from System.currentTimeMillis() before extracting the hour, minute, and
 second.

6. The version of ClockTester supplied in the project folder has two additional fields for
entering the time zone name and offset when creating a clock, and includes these as parameters
when calling the Clock() constructor. Therefore, the signature of your Clock() constructor
should now be

public Clock(double x,
double y,
int faceDiameter,
String timeZoneName,
int utcOffset,
DrawingCanvas canvas)

7. In your main class, after creating each clock, start it by calling its start() method.

8. When creating hash marks, you want the center of the line or dot to be on the circle representing
the clock face. Since the underlying drawing mechanisms work with integer numbers of pixels,
you should use an even number for line length or dot size so that the result is an exact integer
when you divide by two for centering.

9. Uniform spacing of the numbers around the clock face can be achieved by positioning the
center of each number on a circle that is concentric with the clock face. This can be done by
using getWidth() and getHeight() on the Text object after it is created and then moving it
so that its center is properly positioned.

10. The better version of the improved hands was created by using the FilledArc class. A filled arc
represents a portion of a circle, and is specified by giving the coordinates of this circle as well as
the starting and ending angle for the arc. (In this case, we want the center of the arc circle to be
at the tip of the hand, with the arc circle passing through the clock center - so its radius is equal
to the length of the hand.)
This means that each time you update the time, you will need to adjust the circle position and the
starting angle of the arc; the circle size and size of the arc will not need to change. Its moveTo()
and setStartAngle() methods can be used for this purpose.

• The circle position is specified by giving the upper-left coordinate of its bounding rectangle.
• The starting angle of the arc is specified in degrees, relative to “3-oclock” hand position,
 measured counter-clockwise.
• The size of the arc is also given in degrees measured counter-clockwise - a value of 6º seems
 to work well.

5

The following drawing shows how these all relate. You will need to do a bit of geometry to
figure everything out!

Position for
hand tip,
computed from
hand length
and angle
computed from
time

11. Centering the digital time requires setting the Text object which displays it to the correct value
(since different times require different widths), then getting its actual width using its
getWidth() method, and then moving it to the right place.

Turn in the following, neatly stapled in the order listed:
1. Project Coversheet (attached)
2. Printout of the java sources for the two classes, and of your html file if you created one. Note

that you are just to turn in a single program, reflecting the highest option you did. However,
you will probably find it wise to attempt options successively, and to save a copy of an option
before moving on to the next in the case of catastrophic error. Be sure you have deleted
unnecessary “boilerplate” code created by BlueJ.

Leave on server:
The BlueJ project folder containing an executable form of your classes. Also, drag the Project2
folder - with its name changed to yourlastname2 to the CS112 Drop Box (Note: you may not
make any changes to the files in the folder after you have turned the project in! However, you may
change the submitted version in the Drop Box prior to the due date by replacing it with a new
version.

6

CS112 - INTRODUCTION TO PROGRAMMING - PROJECT TWO

Author ___

html file name (if other than the one BlueJ creates) ___________________________________

I. Correct Operation / Neat and Aesthetically Pleasing Output

Minimum requirements (max 45) ______
Hash marks - good (max 5) ______

 OR
Hash marks - better (max 10) ______
Numbers (max 5) ______
Hand appearance - good (max 5) ______

 OR
Hand appearance - better (max 10) ______
Digital time (max 5) ______
Creativity (max 5) ______ Total Points _____

II. Methodology

1. Prologue comments for classes, methods and parameters make the purpose of each item clear.

Definitely 4 Mostly 3 Partially 2 Not at all 0

2 Identifiers (class, method, and variable names) clearly describe the item they name and follow
OO naming conventions.

Definitely 4 Mostly 3 Partially 2 Not at all 0

3. Symbolic constants are used where needed.

Definitely 4 Mostly 3 Partially 2 Not at all 0

4. Local and instance variables are used appropriately and where needed.

Definitely 4 Mostly 3 Partially 2 Not at all 0

5. Whitespace (indentation and blank lines) follows a consistent convention and makes the
overall structure of the program clear by enhancing its readability.

Definitely 4 Mostly 3 Partially 2 Not at all 0

Points _____

OVERALL TOTAL (Max 100) Points _____

7

