
CPS221 Lecture: Scheduling

last revised 9/4/14
Objectives

1. To introduce basic scheduling concepts
2. To introduce the three levels of scheduling
3. To introduce various short-term scheduling algorithms

 Materials: 

1. Projectables of process in isolation; in competition with other processes
2. Projectable of process states
3. Projectable of types of scheduler
4. Scheduler demo program with parameter files FCFS.params, SJF.params, 

PreemptiveSJF.params, RR.params

I.   Introduction

A.  We have seen that a major task of an operating system is to manage a 
collection of threads of execution.

B.  This raises the following issue: on a system with a single CPU (or on 
a multi-processor system with fewer CPU's than threads), how is CPU 
time divided among the different threads that are competing to use it?

1.  The component of the operating system that addresses these issues 
is called the scheduler.  

2.  As we shall see, scheduling is often handled on several levels, 
with CPU scheduling being the lowest level.  So we will want to 
discuss scheduling in general and CPU scheduling in particular.

3.  Many of the basic concepts of scheduling were developed in an 
era when batch processing and/or timesharing dominated 
computing, so that each thread of execution was part of a different 
process that typically represented the needs of different users.  

1



a)  Thus, discussions of this subject have historically spoken in 
terms of “processes” rather than “threads” - and most writers 
(but not your text) still do. 

b)  However, the same principles are relevant whether we have 
different processes servicing different users or multiple processes 
performing different tasks on behalf of the same user or multiple 
threads that are part of a single task.

4.  Actually, though we will focus on CPU scheduling, the principles we 
will discuss are relevant to any situation in which there is competition 
among users for some shared resource.

C.  CPU scheduling views a process (or thread) as being in one of three 
states at any given time:

1.  The states are:

a)  Running - i.e. actually using a processor.

b)  Ready - i.e. able to use a processor, but not running because 
there are not enough processors to go around.

c)  Blocked - i.e. unable to use a processor until some other event 
has occurred, such as completion of a disk operation or waiting 
for a message from some other process, or executing a sleep() 
operation.

Basic CPU scheduling strategies don’t distinguish between 
different possible reasons why a process (or thread) may be 
blocked.  Conventionally, we just call such situations 
“IO”  (though the actual reason may be quite different, such as 
a sleep).

2.  If a process (or thread) were executing in a context where there 
was no competition for resources, it would alternate between the 
running and the blocked state.  Conventionally, we refer to these as 
“CPU bursts” and “IO bursts”. 

2



We can picture the behavior of a process (or thread) operating in a 
context in which there is no competition with other processes this 
way: 

PROJECT Process in isolation

a)  Observe that a process (or thread) always begins and ends with 
a CPU burst, with IO bursts and CPU bursts alternating in 
between.

(1)  The last CPU burst ends with a termination operation (e.g. 
something like System.exit() in java).

(2)  All other CPU bursts end with an operation that starts an IO 
burst.  When discussing scheduling, we conventionally refer 
to these as IO requests - even though the actual operation 
may be something else.

(3)  All IO bursts end with an operation that makes the process 
(or thread) ready for another CPU burst.   When discussing 
scheduling, we conventionally refer to these as IO 
completion - even though the actual operation may be 
something else.

3



b)  We refer to the sum total of the time required for all the bursts 
as the “service time” of the process (or thread).

3.  If the CPU bursts of a process (or thread) are typically shorter than 
the IO bursts, we say that the process/thread is IO Bound.  If they 
are typically longer, we say that it is CPU Bound.  This 
terminology reflects the fact that

a)  If it is IO bound, the service time is largely determined by the 
time spent doing IO.  Improving the speed of the IO device 
could significantly reduce the service time, but improving the 
speed of the CPU might not. 

b)  If it is CPU bound, the service time is largely determined by 
the time spent doing computation.  Improving the speed of the 
CPU device could significantly reduce the service time, but 
improving the speed of the IO devices might not. 

4.  I f there are more processes (or threads) present on the system 
than can have their needs met by the available resources at any one 
time, then the actual situation will look like this

PROJECT process in competition with other processes

4



a)  Notice that it will often be the case that a process(or thread)  
that has requested an IO operation will have to wait until the 
device becomes available if some other process is using it.  Of 
course, this entails a form of scheduling as well - but not the 
subject we are discussing here. 

b)  We refer to the total time between the time the process (or 
thread)   starts and the time it terminates - including the waiting 
time - as its turnaround time.

D.  Scheduling systems seek to achieve a balance between several 
factors.

1.  Efficient utilization of resources.  In general, we want to avoid 
having a resource sit idle when there is some process/thread that 
could use it.

Example: Suppose that the system contains a mix of CPU bound 
and  IO bound processes (or threads).  In this case, if the CPU 
bound processes/threads are allowed to “hog” the CPU, then 
utilization of the IO devices will be low, since the primary 
processes that use them will have to spend a lot of time waiting for 
the CPU in order to be able to generate work for the IO devices to 
do.

2.  Maximizing throughput.  The throughput of a system is the 
number of processes (or threads) that actually complete in a period 
of time.

3.  Minimizing average turnaround time.

4.  Minimizing response time.  The response time is the time between 
when an interactive users submits a request and when the system 
begins to respond to the request.  (Response time is only an issue 
when the user is interactive).

5



5.  Exhibiting desirable behavior

a)  Avoiding indefinite postponement.  It should not be the case 
that biases in the design of the system result in some process (or 
thread) never being able to complete.

b)  Uniformity - the behavior of the system should be predictable. (e.g. 
interactive users tend to prefer a response time of several seconds to 
response times generally very low with occasional long delays.)

c)  Graceful degradation - in the face of excessive loads, the 
system response should deteriorate gradually, rather than 
coming to a sudden virtual standstill.

6.  If the system is servicing real-time processes, it will also have to 
respect hard deadlines for these processes.

7.  Schedulers also typically try to achieve some sort of fairness in the 
way they treat different users - though fairness might not be strict 
equality, but might rather be based on the system’s priorities.  (E.g. 
in a real time system it might well be undesirable for some notion 
of fairness to interfere with satisfying real-time deadlines.)

Note that the above factors conflict with one another - so any 
scheduler represents a tradeoff between different considerations.

E. The scheduler works in cooperation with the interrupt system of the 
CPU.   Most IO devices are capable of interrupting the CPU when 
they complete the work assigned to them - this causes the CPU to put 
aside the process it is working on and run a special interrupt handler.

1.  The scheduler assigns the CPU to perform computation on behalf 
of a particular process (or thread within a process).

2.  The CPU can be "borrowed" from its current process by an interrupt. 
This is under the control of the external devices, not the scheduler - 
though interrupts can be disabled for a short time if need be.

6



3.  When a process (or thread) requests an IO operation, it  becomes  
ineligible to use the CPU until the transfer is complete.

a)  This means that the scheduler will have to choose a new process (or 
a new thread within the same process) to use the CPU.

b)  Eligibility for the process (or thread) that requested the IO to 
use the CPU is restored when the device in question interrupts 
to  indicate that the transfer is complete.  Following the 
interrupt, the scheduler may be invoked to decide whether the  
CPU should go back to:

(1)  The process (or thread) that was running when the interrupt  
occurred.

(2)  The process (or thread) that requested the IO operation that  
caused the interrupt.  This is called “IO preemption”

(But on non-preemptive systems the CPU always goes back 
to the process (or thread) that was running.)

c)  Thus, the interrupt handlers have to interact in some way with  
the data structures used by the scheduler.

d)  Typically, a system also has a timer that interrupts the CPU at 
fixed intervals (e.g once per millisecond).

(1)  At each timer interrupt, the CPU’s internal clock is updated 
by incrementing it.

(2)  A timer interrupt may also result in  invoking the scheduler 
to give another process (or thread) a turn, to prevent a 
compute bound process/thread from “hogging” the CPU.  
We use the term “timer preemption” to describe the situation 
where the running process (or thread) is is forced to yield the 
CPU to some other process (or thread).

7



e)  In a multiprogrammed operating system, the interrupt handling 
code of the device drivers together with the scheduler (or at 
least a portion of it) constitute the "kernel" of the operating 
system.   Because the kernel routines must modify the scheduler 
data structures, it is common for them to run at least part of the 
time with interrupts disabled, so that an update is not 
interrupted in mid-stream.

F.  For simplicity, in the remainder of our discussion we will speak in 
terms of scheduling processes.  However, the same principles would 
apply to scheduling threads within a process if thread are implemented 
in the kernel (the one to one model) rather than in user mode (the 
many to one model). 

II. Basic Scheduling concepts

A.  Terminology

1. Recall that a process is a program in execution.  From a scheduling 
point of view, a process constitutes a claim on the system 
resources.

a) A process is defined by:

(1)A portion of memory that contains the program that is being 
executed by the process, together with its data.

Because the size of main memory is limited, a system may 
not be able to store all the code and data for all processes it 
is handling in memory.

(a) In this case, the code and/or data of a process that does 
not appear to be needed immediately may be kept on disk 
to free up main memory for the needs of other programs.  
(This is referred to as virtual memory).

8



(b) If a process appears to be waiting for an event that is 
expected to be a long time coming (e.g. interactive input 
from a user who has not input anything to a given 
program for a while), it may be desirable to swap the 
entire program out to “swap space” on disk to free up 
memory space for currently running programs.

However, because it takes a significant amount of time to 
transfer information between main memory and disk, it is 
necessary that processes that are likely to be run in the 
near future (or at least the portion needed immediately) 
be resident in main memory.

(2)The contents of the CPU registers used by the process 
(including the PC which determines which instruction in the 
program is to be executed next.

In the case of a running process, the values are actually 
present in the registers of the CPU.  For ready processes, 
they are kept in the PCB of the process in main memory.

When a new process is run in place of the previous one, it is 
necessary to copy the CPU registers for the process that was 
running to its PCB, and to copy to the CPU registers the 
values stored in the PCB of the process that is about to run.  
This is referred to as a “context switch”, and does require 
enough time to make it important to avoid unnecessary 
context switches.

(3)A state.  From the standpoint of the scheduler, the state 
transitions of a process may be pictured as follows:

9



PROJECT

Note that the operation of giving a process the CPU (so it 
becomes the running process) is called “dispatching”; for 
this reason, the scheduler is sometimes called “the 
dispatcher”.

(4)We have already noted that the system keeps information 
about a process in a process control block (PCB).    In 
addition to containing information about the process’s 
memory allocation, registers, and state, the PCB will also 
contain appropriate information needed by the scheduler; the 
exact nature of this information will vary depending on the 
scheduling algorithm being used, of course.

2. A scheduler uses a number of lists - called queues - to keep track of 
processes waiting to use various resources: the CPU, disks etc.  

a) In the context of schedulers, we use the term "queue" in a 
broader  sense than the way we defined it in Data Structures.  

(1)An operating system scheduler queue may be managed 
using a FIFO discipline, but often uses some other ordering 
mechanism such as some sort of priority scheme.

10



(2) In fact, a scheduler queue may be a fairly complex data 
structure composed of a number of lists - we’ll see examples 
of this shortly.

b) In the case of the CPU, the queue is called the ready list and  
contains all the ready processes that are not currently running.

c) In addition, queues may be associated with various IO devices 
that (such as disk) that may be accessed by more than one 
process at a time.  (We will not discuss scheduling algorithms 
for these.)

B. Types of schedulers: A multiprogrammed system may include as 
many as  three types of scheduler:

1. The long-term (high-level) scheduler admits new processes to the  
system.

Long-term scheduling may be necessary because each process 
requires a portion of the available memory to contain its code and 
data. 

a) This is typically used on batch systems, but is less common on 
timeshared systems or single user systems.

b) In a batch system, a long term scheduler may attempt to achieve  
a good balance (job mix) between compute-bound and IO 
bound jobs. Ideally, the job mix would include 1-2 compute 
bound jobs that can help maximize CPU usage, plus as many 
IO bound jobs as possible - preferably representing a good 
mixture of demands on the various shared IO devices.

Note that CPU time is wasted whenever the ready list is empty - 
i.e. all jobs are in the wait state.  Compute bound jobs are 
almost always ready and thus help ensure that little CPU time 
goes unused.

11



2. Medium-term (intermediate) scheduling is controls which 
processes are actually resident in memory, as opposed to being 
swapped out to disk. 

The need for swapping may arise in two ways:

a) In a batch system, the long-term scheduler may admit more 
users or in a time-shared systems more users may try to use the 
system than can all fit in memory, .  However, since time-shared 
processes are characterized by bursts of activity interspersed 
with periods of idleness while the user thinks or takes a break, 
the medium-term scheduler can swap-out temporarily inactive 
processes.  As soon as new input arrives from the user, the 
process can be swapped back in and another process swapped 
out.

b) In any kind of system, a sudden increase in the memory 
requirements for one process can make it necessary to either 
swap out the process that  wants to grow until space is available 
for it or swap out another process to make room for it.

c) Note that the medium-term scheduler only swaps out processes 
when it  has too.  Ideally, swapping should only occur when the 
usage level on the system is very high.  Often, the onset of 
swapping brings a noticeable decrease in system performance - 
hence the advice that one can often improve the performance of 
a sluggish system by buying more memory!

3. The short term scheduler determines the assignment of the CPU to  
ready processes.  The rest of our discussion will focus on this kind 
of scheduling.

4. Summary:

12



PROJECT  Types of scheduler

Note on frequency of execution:

a) A long-term scheduler is executed infrequently - only when a 
new  job arrives.  Thus, it can be fairly sophisticated. (Long-
term schedulers are generally only found on batch systems)

b) A medium-term scheduler (if it exists) is executed more 
frequently. To minimize overhead, it cannot be too complex.

c) A short-term scheduler is executed very frequently - whenever 
any IO request occurs, and often when one completes, as well 
as possibly when a timer interrupt occurs  Thus, it must be very 
fast.  On some machines, it is common to find hardware support 
for certain scheduler functions to help out.

13



III.Scheduling Algorithms

A. Scheduling algorithms can be classified in two different ways:

1. First-come-first-served type algorithms vs priority algorithms.

a) Under a first-come first-served scheme, a  queue (in the 
operating systems sense) is indeed a queue in the  data 
structures sense. 

b) As we shall see, it is often desirable to use some sort of scheme 
in which each process has a priority assigned to it.  In a priority 
scheme, the highest priority ready process is selected; in the 
case of equal priorities, FCFS is used to resolve ties.  (Note we 
can think of FCFS as the degenerate case of a priority scheme 
in which all processes have the same priority.)  

Priorities can be

(1)Externally assigned

(a) On the basis of the type of process:

i) Timeshared systems may allow batch processes to run 
as background processes with lower priority.  Thus, 
the system gives priority to interactive users, but uses 
otherwise unused CPU cycles for batch processes.

ii) Real-time systems may allow non realtime processes 
to run, but give priority to real-time processes which 
may be idle for much of the time, but have get all the 
CPU resources they need when they need the CPU.  

(b)On the basis of payment for service.  If computer time is 
being sold to outside users, multiple classes of service 
may be provided, with higher priority for higher billing.

14



This doesn’t seem to be particularly relevant now, but 
could become much more relevant as “Cloud computing” 
catches on.

(c) On the basis of the user voluntarily choosing a lower 
priority.

SHOW UNIX man page for nice 

(2) Internally computed by some algorithm that seeks to 
maximize one or more performance characteristics.  (We’ll 
discuss some of these below)

(3)Note that external priorities are typically static - i.e they are 
determined before a process is started - while internal 
priorities are typically dynamic - i.e. they are computed as 
the process is running, based on its behavior

(4)Also possible is some combination of external and internal 
priorities.

2. Non-preemptive vs preemptive schemes.

a) In a non-preemptive scheme, once a process has been granted the 
CPU, the simplest approach is allow the process to continue using the 
CPU until it voluntarily yields the CPU - eg by requesting an IO 
transfer.  Of course, IO interrupts may steal the CPU from time to 
time; but after each interrupt, control passes back to the process that 
was running when it occurs.  This is called a non-preemptive 
approach.

b) In a preemptive scheme, a running process may be forced to 
yield the CPU (thus returning to the ready list) by an external 
event rather than by its own action.  Such external events can be 
either or both of the following kinds:

15



(1)Timer pre-emption.  When a process is dispatched (given the 
CPU), some algorithms assign a time quantum which 
represents the amount of time the process is allowed to run 
without blocking.   If the process still hasn't yielded the CPU 
of its own   accord at the end of the time quantum, then it is 
pre-empted in favor of some other ready process.  

(2)Priority pre-emption (in a scheme that uses priorities) When 
a higher priority process enters the system from outside or a 
higher-priority process that was in the blocked state becomes  
ready as the result of an IO interrupt that moves a formerly 
waiting process to the ready list, the currently running 
process may be preempted in favor of this higher priority 
process.

(3)While these two sorts of pre-emption is similar, it is helpful 
to distinguish them because some algorithms use one sort of 
preemption but not the other.

B. Probably the simplest scheduling algorithm is straight first-come first-
served (FCFS).

1. This is a non-priority, non-preemptive algorithm.  For reasons we 
shall soon see, it is rarely used for short-term scheduling, but it can 
be used for long-term scheduling and also provides a foundation 
for understanding other algorithms.

2. In the case of short term (CPU) scheduling, the basic idea is this

a) a queue of ready processes is used - called the ready list.

b) Whenever the CPU becomes available because the running 
process yields it by blocking or terminating, the first process on 
the ready list is removed and given the use of the CPU for as 
long as it needs it (i.e. until it blocks or terminates).

16



c) When a new process enters the system or a blocked process 
becomes ready, it is placed at the end of the ready list - to be 
given the CPU when its turn comes.

3. Evaluation

a) The obvious strength of this algorithm is its simplicity

b) But it has significant weaknesses.  

(1)On a system that has a mixture of CPU-bound and IO-bound 
processes, this scheme would exhibit a bias toward one type 
of process.  Which type, and why?

ASK

(a) It is biased in favor of CPU Bound processes, because 
CPU bound processes typically need few but long CPU 
bursts, while IO bound processes typically need many but 
short CPU bursts - so IO bound processes will have to 
wait for the CPU more often.

(b)DEMO: Scheduler demo with file FCFS.params

(2)A second problem - related to this - is that while this 
algorithm will keep the CPU fairly busy if system load is 
high, it tends not to make good use of IO devices.  (Note in 
demo) 

C. One way to address the problem of FCFS’s bias in favor of CPU-
bound processes is to use an internal-priority algorithm known as 
shortest job first (SJF).

1. The name comes from the fact that this algorithm was first used for 
long-term scheduling.  In a batch environment, users might be 
required to give an upper bound on the total CPU time needed for a 
job.  (If a job exceeded this upper bound, it would be terminated - 
something which tended to discourage low balling an estimate!)

17



2. For short-term scheduling, priority is based on inverse order of 
CPU burst length.  

Of course, this raises a question - how can CPU burst length be 
known?  

3. The answer is that, while the time needed for a given CPU burst 
cannot be known ahead of time, it is possible to make a good 
estimate based on the past behavior of the process

a) One approach is to simply keep track of the total CPU time used so 
far by a process, and the total number of CPU bursts received so far.  
Then the estimated time of the next burst is simply total time / number 
of bursts.

b) A better approach, known as exponential averaging. is both 
simpler to calculate and takes into account the fact that burst 
lengths may vary over time as the process moves through 
various phases of activity, though not too widely from one burst 
to the next.

(1)A process's estimated burst duration is a weighted average 
of:

(a) The predicted duration of its last burst (which 
incorporates information about its long term history)

(b) the actual duration of its last burst.

(2)The formula that is used is

tn+1 predicted  =  α *  tn actual + (1 - α) * tn predicted

(where alpha (α) is a parameter between 0 and 1 that  
determines the relative weight given to the two terms.)

18



(3)The name “exponential averaging” comes from the way this 
computation ends up treating the past history of the process.  For 
example, using the above with α = .5, we get 

tn+1 predicted  =  α *  tn actual + (1 - α) * tn predicted 

=  .5 *  tn actual + .5 * tn predicted

=  .5 * tn actual +  .25 * tn-1 actual + .125 * tn-2 actual + ...

   n

= Σ(.5) n-i+1 * ti actual 
   i=0

(4)Note that this can be easily implemented in software (without 
needing to actually keep a complete history of burst lengths). In 
each PCB we store the predicted value for the current burst. When 
the burst terminates, we can simply update the estimate.  In the 
case where we use α = 0.5, we can simply add in the actual value 
and then shift the result right one place = dividing by 2.

4. Evaluation

a) It can be shown that SJF minimizes average turnaround time 
since moving a shorter job ahead of a longer job decreases the 
turnaround time for the shorter job more than it increases the 
turnaround time for the longer job.  

b) However, in an environment where there are many IO bound 
processes, it becomes possible for IO bound processes to starve 
CPU bound processes.

DEMO: Scheduler with SJF.params

(Note: demo does not attempt to deal with waiting for IO 
devices - the average IO time presumably includes any waiting 
needed.)

19



5. It is also possible to create a preemptive variant of this scheme in 
which a blocked process using shorter burst lengths that becomes 
ready is allowed to preempt a process with longer burst lengths 
that is currently running.

Demo: Scheduler with PreemptiveSJF.params - note slightly better 
performance

D. It is also possible to use a straight priority scheme, based on external 
priorities, with or without preemption.

1. When the time comes to choose a process to run, instead of 
choosing the first process to have arrived, we might choose the 
highest priority process, based on external priorities.

2. Of course, this runs into the problem of potentially starving low 
priority processes.

a) There is a tale - possibly apocryphal - that when an early system 
that used priority scheduling was shut down after many years of 
operation, a low priority job was found that had been in the 
queue for several years but was never run!

b) Whether this story is true or not, less extreme starvation of low 
priority processes is certainly a possibility.

c) This problem is typically addressed by using some sort of aging 
scheme in which a low priority process’s priority is increased 
gradually based on its waiting time, so that it will eventually be 
chosen to run.  We will look at a particular variant of this 
shortly.)

3. Again, it is possible to create a preemptive version of this 
approach.

4. It is also possible to combine this approach with some adjustment 
of the external priority based on the behavior of the process - e.g.

20



a) A process’s priority may be adjusted upward or downward 
based on its burst length behavior.

b) A process that has just been swapped into memory by the 
medium  term scheduler may be given increased priority for 
access to the CPU and/or for protection against being swapped 
out, so as to not waste the investment involved in swapping it 
in.

c) A process that is using an otherwise under-utilized resource 
may be given increased priority.

E. An approach that is used quite widely is called round-robin (RR).  In 
its basic form it is a non-priority scheme using just timer preemption.

1. This scheme is similar to FCFS, with one important difference: 
Whenever a process is given the CPU, it is allowed to keep it only 
for a fixed period of time called the time quantum.  If a process 
does not voluntarily yield the CPU in this time (by becoming 
blocked or terminating), the CPU is taken away from it and given 
to the next ready process, while it is placed at the end of the ready 
list.

2. This algorithm tends to be more balanced in its treatment of IO 
bound and CPU bound processes.

DEMO: Scheduler run with RR.params

3. While basic round robin uses just timer preemption, it can be 
extended to use external priorities and possibly priority preemption 
as well.

a) When a process is chosen to run, the highest priority ready 
process is chosen, rather than the next in line as in FCFS.

21



b) When a blocked process becomes unblocked, it may be allowed 
to preempt the running process if the running process has lower 
priority.  (This is in addition to timer preemption resulting from 
using up a time quantum).

c) Of course, one problem to be faced when external priorities are 
used is this: if a high priority process is pre-empted due to  a 
time quantum expiration, then how is the next process to run  
selected?  If we simply take the highest priority ready process, 
then we would simply select the process that was just pre-
empted  since, by assumption, if it was running then it was the 
highest priority running process!

(1)Often we find that the majority of the processes on a system 
may have the same priority, especially if priorities are 
externally assigned.  In this case, we use FCFS within a 
priority; so the pre-empted process is placed behind all other 
processes of the same priority in the queue.

(2)The priority of a pre-empted process may be reduced in 
some way to enable another process to get a crack at the 
CPU. 

F. An interesting approach that combines aspects of SJF and RR with a 
form of aging is called Highest Response Ratio Next (HRN).  

1. HRN is based on something called the response ratio.  The response 
ratio of a process is define as

response ratio = (time waiting + service time) / service time

a) Clearly, the response ratio grows with waiting time.

22



b) However, for shorter service times, the response ratio increases more 
rapidly with time waiting.

For example, the following table contrasts how response ratio grows 
with waiting time for two processes, one with service time 1 and one 
with service time 5
Waiting time! Response ratio! Response ratio
! service time 1! service time 5
0! 1! 1
1! 2! 1.2
2! 3! 1.4
3! 4! 1.6
4! 5! 1.8
5! 6! 2
6! 7! 2.2
7! 8! 2.4
8! 9! 2.6
9! 10! 2.8
10! 11! 3

c) Thus, the response ratio can be used as a priority, with greater 
values meaning higher priority  This ends up doing two things:

(1) It gives priority to processes needing shorter CPU bursts, as in SJF.

(2) It incorporates aging to avoid SJF’s potential starvation 
problem.

2. HRN can also use RR-style time quantums.  In this case, if a 
process uses up its time quantum, response ratios can be 
recalculated before deciding whether to give it more CPU time.

a) The running process’s response ratio will have decreased 
because it has received more service time.

b) But the response ratio of all other processes will have increased 
because they have experience additional waiting time.

	

 	

 DEMO

3. HRN can also use external priorities - so that the priority of a 
process reflects some combination of an external priority and its 
calculated response ratio.

23



IV.Time quantum selection

A. We have noted that many scheduling systems use some form of timer 
interruption to keep a single process from hogging the CPU.  A key 
design question is the length of the time quantum to be used.

1. The main reason why this is an issue is that switching from 
running one process to running another process - known as context 
switching - can entail significant use of CPU time.

a) The actual actions that need to occur - saving one process’s set 
of registers in the PCB and loading another’s - takes some time.

b) But the biggest impact may come from the memory system, due 
to the need to replace entries in cache memory and possibly 
even in main memory.

2. If the time quantum is of magnitude comparable to the time needed 
for context switching, then the overhead of context switching will 
require an unduly high share of the processor cycles.

DEMO: Scheduler with RR.params - first with time lost to context 
change initial value (0), then 1, then 5, then 10

3. If the time quantum is too long, then response time on a time 
shared system will begin to degenerate, and IO device usage will 
drop on any kind of system as IO bound processes are unable to 
get the CPU to start a new IO operation when the current one 
completes because a compute bound job has it.

B. One textbook author suggests that one picture an operating system as  
having a dial on the front labeled "q" (for quantum).  Suppose the dial 
is initially set at 0. 

24



1. No one would get any work done - as soon as a process gets the 
CPU, it has to yield it.

2. As the dial is slowly turned up, system response would begin to 
improve.  At low settings, context changing overhead might still 
occupy a high percentage of the overall CPU time, so user 
processes would be slowed down.  But this overhead would 
decrease as the  quantum is increased.

3. As "q" is increased, more and more of the processes on the system 
would be able to complete a CPU burst without being interrupted 
by the timer.

4. However, at some point the response time would begin to 
deteriorate again.  This would be due to an occasional compute-
bound process taking a large slice of time while all the other 
processes wait.

5. Assuming there is a heavily compute bound process on the system, 
further increases in "q" beyond the optimal point would continue to 
degrade response time.

6. Note, however, that if we measure throughput in terms of CPU 
usage, it is possible that throughput might continue to increase 
even after response time has begun to decrease, since less and less 
of the CPU  time goes to overhead.  However, eventually a point 
would be reached where even throughput would decay; when a 
compute bound process does yield, other IO bound processes 
might not be able to take up the slack before themselves having to 
yield the CPU for IO.  This might lead to the CPU sitting idle 
while all processes wait on IO.

C. A good rule of thumb would seem to be that the majority of processes 
should be able to complete a CPU burst without timer interruption.  
(One text suggests around 80% as a rule of thumb.  This might be 

25



higher in a highly-interactive situation, or lower in a situation where 
there is much heavy computation going on.) 

D. It is also possible to relate time quantum to priority.  A compute bound 
process that could benefit from a long time quantum might be given a 
much longer than usual quantum, but also a lower priority.  This 
would mean that it gets CPU bursts less often, but gets longer bursts 
each time, resulting in the same overall average CPU use with less 
overhead.

The following builds on this idea to create a scheme known as  multi-
level feedback queues. (MLFQ)

1. The ready list consists of an array of FIFO queues of decreasing 
priority.  

2. There is a time quantum associated with each queue.

a) For the highest priority queue, time quantum is some basic 
value.

b) For each successive queue, the quantum is double the quantum 
for the next highest priority queue.  Thus, if there are n queues, 
the lowest priority queue has quantum (quantum of the highest 
priority queue) * 2n-1.

3. A newly arrived process is placed at the rear of the highest priority 
queue. 

4. Whenever the dispatcher needs to choose a process to run, it starts 
looking at the highest priority queue.  If the dispatcher finds the 
highest level queue to be empty, it looks at the next queue down - 
and keeps looking until it finds a non-empty queue.  At that point, 
it dispatches the front process in that queue with time quantum 
equal to the value associated with that queue.

5. Processes move between queues based on their performance.

26



a) A process that completes its CPU activity before the quantum 
expires will be moved up a level when it next becomes ready 
(unless it is already in the highest queue).

b) A job that fails to complete its CPU burst within the time 
quantum is moved down to the next queue, until it reaches the 
bottom, where it remains.

6. A process can be preempted by another process if

a) A blocked process associated with a queue of higher priority 
becomes ready

b) In the case of quantum expiration, if there is another process in 
the queue the process was in previously (since it has now gone 
down a level)

7. Some sort of aging scheme may also be applied to keep processes 
from getting “stuck” at the lowest level with no chance to run.

27


