
CS311 Lecture: Control Structures Revised 9/11/17

Objectives:

1. To introduce the MIPS unconditional branching instructions - j, jr
2. To introduce the MIPS conditional branching instructions - beq, bne
3. To show how HLL control structures can be realized by branches
4. To show how to implement inequality comparisons using slt, slti

Materials:

1. MIPS ISA Handout (they already have)
2. Handout on Translation of Control Structures

I. Introduction
- ------------

 A. In our first intoduction to the execution cycle of a Von Neumann
 architecture computer, we met the Program Counter (pc) register - which
 always holds the address of the NEXT instruction to be fetched from
 memory and executed.

 1. In the standard fetch/execute cycle, the pc is updated after fetching
 an instruction to point to the next successive instruction.

 2. In the case of MIPS, this means adding 4 to the pc after each
 instruction is fetched, since all MIPS instructions are one word
 (4 bytes) long.

 3. Obviously, if this were the only way to update the pc, this would
 result in executing each instruction in the program once, from top
 to bottom without any variation - which would not usually be usefui.

 B. In HLL's such as C/C++ or Java , we typically have a number of constructs
 for altering the order of program execution within a procedure - e.g.

 if (...) ... else ...
 switch (...) { case ... case ... case ... default ... }
 while (...) ...
 do ... while (...)
 for (...) ...
 goto ... // C/C++ only - not Java

 C. In machine language, regardless of the machine, we basically have only
 two:

 1. The equivalent of goto ... - puts a new value into the pc, causing
 the next instruction to be fetched from that location. This is
 called in various ISA's an UNCONDITIONAL BRANCH or a JUMP.

 2. The equivalent of if (...) goto - puts a new value into the pc
 if and only if some condition is true. This is called CONDITIONAL
 BRANCH or simply BRANCH.

 3. Actually, we could make do with only the conditional form - we could
 get the effect of an unconditional branch by using a conditional
 branch with a condition that we guarantee to be true. However,
 most architectures, including MIPS, provide both forms, because the
 unconditional form is simpler and can be made more flexible.

 D. In this lecture, we will focus on MIPS instructions for altering the
 order of program execution. However, similar facilities are found in
 all ISAs.

II. MIPS Program-Control Instructions
-- ---- --------------- ------------

 A. Unconditional jumps - Two variants:

 1. j address - Destination address is contained in instruction

 a. It looks like this (all values given in decimal)

 # of bits 6 26
 field name op target address
 contents op = 2
 for j

 This general format of instruction is called J format (where J
 stands for "jump"

 b. The jump instruction specifies the address of an instruction; this
 address is put in the pc in place of the value computed by adding
 4 to the address of the current instruction.

 c. The target address field in the instruction is only 26 bits long,
 which isn't long enough to specify an address anywhere in memory
 (for which a 32 bit address is required). Two measures are used
 to deal with this.

 i. The target address specified in the instruction is multiplied by
 4. Multiplication by 4 is done because instructions are words,
 and therefore must have addresses that are a multiple of 4.
 Doing this allows a 26 bit address to encode information that
 corresponds to the lower 28 bits of the pc.

 ii. The target address is loaded into the lower 28 bits of the pc,
 and the upper 4 bits are left alone. This means that the
 jump must always be to an address in the same 256 MB chunk of
 memory as the instruction is in. Since most programs are
 much smaller than 256 MB, this hasn't proved to be a serious
 problem - (yet!)

 2. jr register - Destination address is contained in register

 a. It looks like this (all values given in decimal)

 # of bits 6 5 5 5 5 6
 field name op rs rt rd shamt funct

 contents op = 0 reg (not (not (not 8 for jr
 for that used - used - used -
 most R holds 0) 0) 0)
 type destination
 instructons

 (Note that this is an R format instruction, though most
 of the fields go unused.)

 b. The contents of the specified register is placed in the pc,
 becoming the address of the next instruction. Multiplication
 by 4 is NOT done (not needed).

 c. With this format, any location in memory could be the destination,
 so it could be used in the case where j could not reach a desired
 destination - but this is rarely, if ever, an issue.

 d. More commonly, the jr is used for two cases, both of which
 require that the destination address of the branch be computed
 during program execution, rather than being hardwired into the
 code.

 i. In implementing switch instructions - discussed below

 ii. In implementing return from a procedure - discussed in the
 next series of lectures.

 3. As was true with the branch instructions, jumps are typically
 followed by a nop, because the next instruction is fetched at the
 same time it is discovered that the instruction begin executed is
 a jump.

 B. We talked earlier about the two conditional branch instructions

 1. The two instructions are

 a. beq - branch if the two registers are equal

 b. bne - branch if the two registers are not equal

 2. Recall that conditional branches are I format instructions that
 specify two registers to be compared and a 16 bit signed offset
 which is added to the PC if the branch is taken.

 a. Recall that the offset is first multiplied by 4 (because all
 instruction addresses are a multiple of 4) and then added to
 the value currently in the pc, which is by this time the address
 of the NEXT instruction to be executed.

 b. The offset can range from -32678 to +32767. After multiplication
 by 4, and adding to the address of the next instruction, this means
 that conditional branches can "reach" to an instruction in the range

 address of branch instruction - 131068 ..
 address of branch instruction + 131072

 4. Recall that a conditional branch instruction is typically followed
 by a nop.

 5. Where the distance to the target instruction is small, a conditional branch
 instruction can be used as an unconditional branch by using the same register
 (generally R0) as both registers with beq. (Because this uses relative
 addressing, it results in relocatable code.)

III. Translating HLL Control Structures
--- ----------- --- ------- ----------

 A. We are now ready to see how some familiar HLL control structures
 can be translated into assembly/machine language.

 1. To keep our focus on the control structures, we'll write the HLL
 statements in terms of CPU registers - actually they would be written
 in terms of HLL variables which have to be mapped/load into
 registers, of course.

 2. Likewise, we'll specify the target addresses of the branch
 instructions symbolically - e.g.

 bne $4, $5, L1
 ...
 ...
 L1: some instruction

 will mean "put a target address into the branch instruction
 such that when it is multiplied by 4 and added to the address
 of the next instruction it will cause execution to continue
 at the instruction labelled L1:

 Example: Suppose the bne instruction is at address 0x1000, and the
 instruction labelled L1 is at 0x100c - then the branch
 instruction would be encoded as:

 bits 31..26 25..21 20..16 15..0
 (6) (5) (5) (16)

 field 5 4 5 2
 values
 (decimal)

 binary 000101 00100 00101 0000000000000010

 = 0001 0100 1000 0101 0000 0000 0000 0010
 hexadecimal = 0x14850002

 The instruction contains 2 in the offset field because
 the instruction following the branch is at 0x1004, and
 0x1004 + (4 x 2) = 0x100c = desired target.

 (This is a computation that the assembler routinely does.)

 DISTRIBUTE CONTROL STRUCTURES HANDOUT

 B. Simple if (no else)

 Example: if ($4 == $5)
 do something

 bne $4, $5, L1
 code for do something
 L1: (next instruction after the if)

 (Note the inversion of the sense of the branch)

 C. If .. else
 Example: if ($4 == $5)
 do something
 else
 do something else

 bne $4, $5, L1
 code for do something
 j L2
 L1: code for do something else
 L2: (next instruction after the if)
 (Note, again, the inversion of the sense of the branch)

 D. While loop

 Example: while ($4 == $5)
 do something

 L1: bne $4, $5, L2
 code for do something
 j L1
 L2: (next instruction after the while)

 or: (slightly more efficient - one less instruction in loop body)

 j L2
 L1: code for do something
 L2: beq $4, $5, L1

 E. Do .. while loop

 Example: do
 do something
 while ($4 == $5)

 L1: code for do something
 beq $4, $5, L1

 F. For loop

 Example: for ($4 = 0, $4 != $5, $4 ++)
 do something

 sub $4, $4, $4
 L1: beq $4, $5, L2
 code for do something
 addi $4, $4, 1
 j L1
 L2: (next instruction after the for)

 or: (slightly more efficient - one less instruction in loop body)

 sub $4, $4, $4
 j L2
 L1: code for do something
 addi $4, $4, 1
 L2: bne $4, $5, L1

 G. Switch statement - two possible approaches

 1. Translate the switch as if it were a series of ifs:

 Example: switch(x)
 {
 case v1:
 code1;
 break;
 case v2:
 code2;
 break;
 ...
 default:
 coded
 }

 lw $4, x
 li $2, v1
 bne $4, $2, L1
 code1
 j Lfini
 L1: li $2, v2
 bne $4, $2, L2
 code2
 j LFini
 L2: ...
 Ln: coded
 LFini:

 2. The problem with the above is that we could be forced to do as
 many comparisons as there are cases - and on the average would
 do half. If the set of case labels forms a dense set, with few or any
 missing values, then a much more efficient translation is possible
 using a JUMP TABLE.

 Example: We could translate the following switch statement as shown

 switch(x)
 {
 case 0:
 code0;
 break;
 case 1:
 code1;
 break;
 case 2:
 code2;
 break;
 default:
 coded;
 }

 lw $4, x
 -- if $4 < 0 or $4 > 2 do coded (as above) then j LFini
 -- multiply $4 by 4 (shift left two places)
 lw $4, JTable($4)
 jr $4

 JTable: Lcode0
 Lcode1
 Lcode2

 Lcode0: code0
 j LFini
 Lcode1: code1
 j LFini
 Lcode2: code2
 j LFini

 LFini:

 H. Note that, on occassion, it may be necessary to translate an HLL
 construct circuitously, because of the limited range of the conditional
 branch instructions (though this will not happen often on a machine
 like MIPS because the range of the conditional branch is -32767/+32768
 INSTRUCTIONS. It is conceivable that a problem could arise with the
 initial conditional branch at the start of a very large switch
 statement.

 1. Typical if ($4 == 0)
 example: $4 = $5

 bne $4, $0, L1
 move $4, $5 # translated as add $4, $5, $0
 L1: (instruction after if)

 2. Unusual if ($4 == 0)
 example: ... very long series of statements

 Might have to be translated as follows:

 beq $4, $0, L1
 j L2
 L1: ... translation of long series of statements
 ...
 L2

IV. Handling Comparisons for Other than Exact Equality
--- -------- ----------- --- ----- ---- ----- --------

 A. The conditional branches on MIPS allow us to compare two registers
 for exact equality - i.e. they correspond to the C/C++/Java operators
 == and !=. What if we want to compare for inequality - i.e. we
 want the assembly language equivalents of >, >=, <, or <= ?

 B. The MIPS ISA uses auxillary instructions that set a register to 1 or 0
 based on comparison of two other values.

 slt - compare two registers
 slti - compare a register to an immediate value

 1. The slt instruction has the following format in machine language:

 # of bits 6 5 5 5 5 6

 field name op rs rt rd shamt funct

 contents op = 0 1st 2nd dest (not arith/logical
 for source source reg used - function =
 most R reg reg 0) 42 for slt
 type
 instructons

 (Note: this is an R Format instruction)

 Example: slt $2, $4, $0

 bits 31..26 25..21 20..16 15..11 10..6 5..0
 (6) (5) (5) (5) (5) (6)

 field 0 4 0 2 0 42
 values
 (decimal)

 binary 000000 00100 00000 00010 00000 101010

 = 0000 0000 1000 0000 0001 0000 0010 1010

 hexadecimal = 0x0080102a

 2. The slti instruction has the following format in machine language:

 # of bits 6 5 5 16

 field name op rs rt immediate value

 contents op = source destination value to compare
 10 for slti reg reg to (two's
 complement
 signed number)
 (Note: this is an I Format instruction)

 Example: slti $2, $4, 42

 bits 31..26 25..21 20..16 15..0
 (6) (5) (5) (16)

 field 10 4 2 42
 values
 (decimal)

 binary 001010 00100 00010 0000000000101010

 = 0010 1000 1000 0010 0000 0000 0010 1010
 hexadecimal = 0x2882002a

 3. Example: suppose we want to calculate the absolute value of the
 number in register 4 - i.e. if the value in register 4 is less
 than 0, we want to negate it (by subtracting it from zero.)

 Assume we can use $2 as a temporary.

 a. One approach, using slt to compare $4 to $0 (always zero).

 slt $2, $4, $0 # $2 = 1 iff $4 < 0
 beq $2, $0, L1 # if $2 = 0. skip next instruction
 sub $4, $0, $4 # negate $4
 L1:

 b. A similar approach, but using slti to compare $4 to literal 0.

 slti $2, $4, 0 # $2 = 1 iff $4 < 0
 beq $2, $0, L1 # if $2 = 0. skip next instruction
 sub $4, $0, $4 # negate $4
 L1:

 C. With only a set if less than, how do we handle other comparison orders?

 ASK

 1. x < y slt temp, x, y
 bne temp, target

 2. x > y slt temp, y, x
 bne temp, target

 3. x <= y slt temp, y, x
 beq temp, target (x <= y <=> not y < x)

 4. x >= y slt temp, x, y
 beq temp, target (x >= y <=> not x < y)

