
 

Canaan User Guide 
Connecting to the Cluster 1 

SSH (Secure Shell) 1 
Starting an ssh session from a Mac or Linux system 1 
Starting an ssh session from a Windows PC 1 
Once you're connected... 1 
Ending an ssh session 2 
Configuring SSH for login without typing a password 2 

X2Go 4 
One-time setup 4 
Starting an X2Go session 5 
Ending an X2Go session 5 

Remote Desktop 5 
Starting a remote desktop session 5 
Ending a remote desktop session 6 

Using a Linux System 6 

Using Environment Modules 6 
Overview 6 
Module command summary 7 
Setting default modules 8 
More information on Environment Modules 8 

Running Jobs on the Cluster with SLURM 9 
Cluster Status 9 
Running Jobs Interactively from the Command Line 9 

Running Sequential (single thread) Programs 9 
Running Multithreaded Programs 10 

Running Batch Jobs 10 
Batch Job-Script Template 12 
Stopping Jobs 14 

Using MPI For Parallel Programming 14 
Selecting an MPI version to use 14 
Compiling MPI programs 14 
Running MPI Programs 15 

Monitoring with Ganglia 15 

 



Connecting to the Cluster 
There are several different methods you can use to connect to the cluster, three of which are 
listed here. 

SSH (Secure Shell) 

The most basic way to connect to the cluster is to use SSH in a terminal application. To do this 
you will need to open a terminal session on your computer and use ssh to connect to the 
cluster. This is relatively fast to set up and is sufficient for submitting and checking on jobs, but 
does limit the types of editors and other tools you have access to. 

Starting an ssh session from a Mac or Linux system 

Open a terminal and issue the command: 

ssh ​username​@canaan.phys.gordon.edu 

where ​username​ should be replaced by your username; normally this will be your Gordon 
username in the form ​firstname.lastname​. Your username is case-sensitive and should be 
entered using lowercase letters. The first time you do this you will be met with the prompt 

The authenticity of host 'canaan.phys.gordon.edu (10.100.49.1)' can't be established. 

RSA key fingerprint is e5:76:e0:bf:61:e6:41:eb:6e:8a:df:aa:81:a8:19:58. 

Are you sure you want to continue connecting (yes/no)? 

Type ​yes ​ and press ​Enter ​. You will then be prompted for your password. 

Starting an ssh session from a Windows PC 

You will need to use ​Putty​ or some other terminal emulation program that supports SSH. Putty 
is easy to install; just download ​putty.exe​ and save it to your desktop. Start Putty then do the 
following steps (These need be done only once; from now on when you start Putty you can click 
on the saved session name then click on "Open" to initiate the connection): 

1. Enter ​canaan.phys.gordon.edu​ in the field labeled "Host Name (or IP address)" 
2. Enter ​Canaan​ (or whatever you want to name this connection) in the field labeled 

"Saved Sessions" 
3. Click the "Save" button on the right side of the window 
4. Click the "Open" button at the bottom of the window 

Once you're connected... 

■ Log in using your username (if not already entered) and password. ​These are 
case-sensitive! 

1 

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe


■ You have limited editor choices when working in a terminal through an ssh connection. 
These include ​nano​ (the best choice if you are not already familiar with unix/linux 
editors), ​emacs​, and ​vi​. GUI editors will not normally be available. 

Ending an ssh session 

When you're done, type ​exit ​ at a command prompt and press ​Enter ​. You can also type 
logout ​ and press ​Enter ​ or just press ​Ctrl-D​. Any of these will end your terminal session. 

Configuring SSH for login without typing a password 

Normally when you connect via SSH you will be prompted for your password. It is possible to 
configure your account on Canaan to accept connection requests from your account on another 
machine without requiring you to type in a password. This is done through an SSH key pair. The 
following instructions cover how to set this up on a Mac or Linux machine. (See 
https://winscp.net/eng/docs/ui_puttygen​ for instructions on how to do this with Putty.) 

Log in to your computer and start a terminal. At the command prompt type 

ssh-keygen 

Assuming you have not yet done this, you will see several prompts; you can press ​Enter ​ in 
response to each of them. The resulting output will look something like 

Generating public/private rsa key pair. 

Enter file in which to save the key (/home/jane.doe/.ssh/id_rsa): 

Created directory '/home/jane.doe/.ssh'. 

Enter passphrase (empty for no passphrase):  

Enter same passphrase again:  

Your identification has been saved in /home/jane.doe/.ssh/id_rsa. 

Your public key has been saved in /home/jane.doe/.ssh/id_rsa.pub. 

The key fingerprint is: 

39:1d:3f:f6:a4:7f:9a:f2:df:2d:d1:20:0d:cf:a3:ba jane.doe@some_machine 

The key's randomart image is: 

+--[ RSA 2048]----+ 

|                 | 

|            .    | 

|          .  =   | 

|         o o. *  | 

|        S . +o.+ | 

|         . ..=. .| 

|           .. .. | 

|          . ....+| 

|          E. o==+| 

+-----------------+ 

 

2 

https://winscp.net/eng/docs/ui_puttygen


This command has created a "key pair" and placed them in the subdirectory (folder) ​.ssh ​. 
Change to this directory and list the files there by typing 

cd ~/.ssh 

ls -l 

at the command prompt in the terminal. The output will look something like 

total 8 

-rw------- 1 jane.doe  jane.doe  1679 Nov 12 08:09 id_rsa 

-rw-r--r-- 1 jane.doe  jane.doe   398 Nov 12 08:09 id_rsa.pub 

-rw-r--r-- 1 jane.doe  jane.doe   884 Nov 12 07:49 known_hosts 

The file ​id_rsa ​ contains your private key and should ​never​ be shared or copied anywhere 
(except to a secure backup location). The file ​id_rsa.pub ​ contains your public key and can be 
installed on remote computers like Canaan and so that they will allow login attempts from your 
computer without a password. The file ​known_hosts ​ contains an identifier for each of the 
computers you have already made SSH connections to; an entry will be added to this file each 
time you connect to a new host. 

Since your username on your machine is probably not the same as the one you use on Canaan, 
we'll first configure SSH so it automatically will use the correct username. You will need to use a 
text editor on your computer to create a file in the ​.ssh ​ directory; the instructions here offer one 
way to do this but you can use any method you like. Make sure you are in the ​.ssh ​ directory 
and use an editor of your choice (​nano ​ works well if you don’t already have a favorite) to create 
a new file named ​config ​: 

cd ~/.ssh 

nano config 

Type in the following, replacing ​<username>​ with your username on Canaan 

host canaan.phys.gordon.edu 

    user ​<username> 

Notice at the bottom of the window there are two lines with some basic keystrokes. Type ​Ctrl-X 
to exit the file, respond with ​y​ when asked to confirm writing the file, and press ​Enter ​ to accept 
the default name (​config ​). 

Execute the following commands.  You will probably be asked for your password several times; 
use the password for your account on Canaan: 

ssh canaan.phys.gordon.edu mkdir .ssh 

ssh canaan.phys.gordon.edu chmod go-rwx .ssh 

scp id_rsa.pub canaan.phys.gordon.edu:.ssh/authorized_keys 

ssh canaan.phys.gordon.edu chmod go-rwx .ssh/authorized_keys 

3 



You're done! Try connection to Canaan with 

ssh canaan.phys.gordon.edu 

and you should be logged into your account right away. This also means that you can easily 
copy files back and forth from Canaan using ​scp ​ or ​sftp ​ without having to type your password. 
Type 

man scp 

man sftp 

for more information on how to use ​scp ​ and ​sftp ​. 

X2Go 

X2Go​ is a Remote Desktop solution that enables you to access the graphical desktop of a 
computer over a low or high bandwidth connection.​ This is the recommended way to connect to 
the cluster as it gives you access to the full range of applications, including GUI editors and 
cluster monitors. 

One-time setup 

■ Browse to ​http://wiki.x2go.org/doku.php/doc:installation:x2goclient​ and download an 
X2go client for your system. Clients are available for Windows, OS-X, and many 
distributions of Linux. 

■ Install the client according to instructions on the client download page. 

■ Start the X2go client and click on the "New Session" icon in the upper left corner and 
enter in the following information: 

■ Session name: ​Canaan​ (although you can name this anything you want) 

■ Host: ​canaan.phys.gordon.edu 

■ Login: ​<your username on Canaan>​ (this is​ case sensitive​) 

■ Optional - If you've configured SSH to allow password-less login, click the 
checkbox for ​Try auto login (ssh-agent or default ssh key) 

■ Session type: ​GNOME​ ​(select using the pull-down menu) 

■ Click "OK" to create the session launcher. The new session launcher will appear on the 
right side of the client window. 

4 

http://wiki.x2go.org/
http://wiki.x2go.org/doku.php/doc:installation:x2goclient


Starting an X2Go session 

Configured X2Go sessions will appear on the right side of the X2Go window. 

■ Before connecting, select the desired window size from the pull-down menu for the 
session. The default is 800x600 but you may prefer to use a larger size such as 
1280x1024. 

■ Click on the session name to start a session. If you are prompted for your password, 
type it in (remember that it is case-sensitive). After entering it a new virtual desktop 
window should appear and you should be logged into Canaan. 

■ If an authentication window appears asking you "Password for root:" you can click 
"cancel" to dismiss the window. 

■ Much of the work on Canaan is done using commands typed into a terminal window. To 
open a terminal window, use ​Applications​ -> ​System Tools​ -> ​Terminal​. (You can 
drag the terminal icon from the ​System Tools​ menu to the panel at the top of the 
desktop; this allows you to open a terminal window with a single click.) 

Ending an X2Go session 

■ To end your session, click on your name in the upper right of the virtual desktop, select 
Quit...​, and then click on ​Log Out​. ​ Important: ​Please be sure to do this otherwise your 
session will remain active. 

Remote Desktop 

If you have a Remote Desktop client installed on your machine you can use it to connect to the 
cluster. 

Starting a remote desktop session 

■ Enter ​canaan.phys.gordon.edu​ for the hostname and log in using your assigned 
username and password (don't forget these are case-sensitive). After connecting a new 
virtual desktop window should appear and you should be logged into Canaan. 

■ If an authentication window appears asking you "Password for root:" you can click 
"cancel" to dismiss the window. 

■ Much of the work on ​Canaan​ is done using commands typed into a terminal window. To 
open a terminal window, use ​Applications​ -> ​System Tools​ -> ​Terminal​. (You can 
drag the terminal icon from the ​System Tools​ menu to the panel at the top of the 
desktop; this allows you to open a terminal window with a single click.) 

5 



Ending a remote desktop session 

■ To end your session, click on your name in the upper right of the virtual desktop, select 
Quit...​, and then click on ​Log Out​.  ​Important: ​Please be sure to do this otherwise your 
session will remain active. 

Using a Linux System 
The ​Canaan​ cluster uses CentOS 6 Enterprise Linux. 

Note: Commands in Linux are case-sensitive; you will rarely, if ever, have to type a command 
with upper-case letters. 

One of the first things you should do is ​change your password​. If you connected using remote 
desktop or X2Go, you will need to open a terminal shell. Do this by clicking on ​Applications​ -> 
System Tools​ -> ​Terminal​. If you connected via SSH then you are already using a terminal 
shell. Type ​yppasswd ​ at the command prompt and press ​Enter ​. You will be prompted for your 
current password then asked for a new password and verification. ​Do not use the ​passwd 
command as it will not work. 

Some resources that you might find helpful if you are new to working with Linux on ​Canaan 
include: 

■ LinuxCommand.org 
■ Chapters 8 through 18 (especially chapter 16) of ​CentOS 6 Essentials 

Many different commands are introduced in the sections below. You can find usage information 
and many other details about most of them using the man command. For example, the ​ls 
command is used to list the contents of a directory (folder). To find out about all the options this 
command has type 

man ls 

Use the spacebar to advance through the manual page one screen at a time. Press ​q​ to quit 
reading and return to the prompt. 

Using Environment Modules 
Overview 

It is often desirable in HPC work that different versions or implementations of compilers, 
libraries, or other packages be present on a machine or cluster. The ​Lmod Environment 
Modules System​ makes it easy choose between them. It is important to note that Environment 

6 

http://linuxcommand.org/index.php
http://www.techotopia.com/index.php/CentOS_6_Essentials
https://www.tacc.utexas.edu/tacc-projects/lmod
https://www.tacc.utexas.edu/tacc-projects/lmod


Modules are used mainly for locally installed software. System software, such as the system 
version of Python, can be used without having to do anything with modules. 

You can see what modules are currently loaded by typing 

module list 

Assuming only a few default modules are currently loaded, will resemble 

Currently Loaded Modules: 

  1) gcc/native   2) smake/1.5   3) StdEnv 

You can see what modules are available by typing 

module avail 

The output indicates the names and version numbers of the modules that are currently 
available.  To load a module use the ​module load ​ command. For example, to load the 
openmpi ​ module one would type: 

module load openmpi 

If you do this and then type the ​module avail ​ command again you should see a few more 
lines; these new lines represent modules that are only available when the ​openmpi ​ module is 
loaded. 

Modules are hierarchical and the hierarchy is read from bottom to top in the output of the 
module avail command. The modules ​atlas ​, ​fftw ​, ​mpich ​, and ​openmpi ​ all depend on the 
GNU C/C++ compiler and libraries being present, and so these modules are all available 
because the ​gcc ​ ("native" or "system version") module is already loaded. Likewise, since the 
openmpi ​ module is loaded, the module ​hdf5 ​ that is compatible with OpenMPI is available. 

Now try switching the ​openmpi ​ module with the ​mpich ​ module: 

module load mpich 

and use the ​module avail ​ command again. It will look similar, except that you will see that 
the ​hdf5 ​ module is now located in 
/shared/modulefiles/MPI/gcc/native/mpich/3.2.1 ​ rather than in 
/shared/modulefiles/MPI/gcc/native/openmpi/3.0.0 ​.  Conveniently, if the ​hdf5 
module had already been loaded, swapping MPI implementations would automatically swap 
hdf5 ​ modules so that the proper one will be used. 

Module command summary 

To get help with the module command type 

7 



module help 

Here is a list of some useful module commands: 

 

module avail display available modules 

module help display help information for the module 
command 

module help <module> display help for specified module 

module list list currently installed modules 

module load <module> load specified module 

module purge unload all modules 

module swap <old module> <new module> replace currently loaded module with 
another module 

module unload <module> unload specified module 

module whatis <module> display one-line description of specified 
module 

 

Setting default modules 

It is convenient to create a default set of modules that will be loaded automatically when you 
start an interactive session.  Once you’ve loaded the modules you want available by default, 
type 

module save 

to save the currently loaded set of modules as your default set. 

More information on Environment Modules 

For more information on Lmod Environment Modules, including several user guides, please see 
https://www.tacc.utexas.edu/tacc-projects/lmod​. 

8 

https://www.tacc.utexas.edu/tacc-projects/lmod


Running Jobs on the Cluster with SLURM 
Cluster Status 

Jobs are run on the cluster through a workload manager or resource manager, which is 
responsible for allocating the cluster's resources to jobs. Submitted jobs are placed on a queue 
and the ​workload manager​ (also called a ​job scheduler​) assigns them to a processor or 
processors as they become available. On Canaan we are using ​SLURM​ (Simple Linux Utility for 
Resource Management) as the workload manager. 

The command 

sinfo 

will list all cluster nodes along with their state, often either ​idle ​, ​idle~ ​, ​mix ​, or ​alloc ​. The 
state ​idle ​ means the node is powered on and available and all of its CPU cores are currently 
free and can be allocated to a job. The state ​idle~ ​ indicates the node is currently powered off 
but will be automatically started when it is needed. The states ​mix ​ and ​alloc ​ indicate that 
some or all of the node's cores are allocated to jobs. 

The command 

squeue 

shows a list of jobs currently running on the cluster, including the job name, the user who 
submitted the job, the job's current running time, and the node(s) the job is running on. The 
command 

sview 

opens a window that provides the same information as squeue but with a graphical user 
interface (this will work if you're using remote desktop or X2go; it will only work via ssh 
connections in very specific circumstances). 

Running Jobs Interactively from the Command Line 

Running Sequential (single thread) Programs 

Programs can be run on the cluster using the ​srun ​. To run the executable program ​my_prog 
on one of the cluster nodes you would type 

srun ./my_prog 

9 

http://slurm.schedmd.com/


If the cluster has any free processors (CPU cores not currently assigned to a job), the program 
will be run immediately. If all processors are in use then the program will queued and will run as 
soon the necessary resources become available. 

A Python program called ​my_prog.py ​ can be run with 

srun python ./my_prog.py 

It is possible to run multiple instances of a program by including the ​-n ​ (or ​--ntasks ​) switch 
with the ​srun ​ command. For example, to run 10 instances of ​my_prog ​ one would type 

srun -n 10 ./my_prog 

or  

srun --ntasks=10 ./my_prog 

Running Multithreaded Programs 

It is possible to run a multithreaded program on a cluster node to take advantage of the 8, 12, or 
16 cores each node has.  There are several ways to do this, but one simple way is to provide 
the ​--exclusive ​ switch to ​srun ​; this indicates that the submitted job will be the only one that 
SLURM schedules to run on a particular node.  For example: 

srun --ntasks=1 --exclusive ./my_multithreaded_prog 

Running Batch Jobs 

Although less convenient, additional flexibility is possible by using SLURM as a batch scheduler. 
A small job-script program must be written to specify job parameters such as job name, required 
resources, expected run time, and perhaps an instruction to send the user an email when the 
job completes. These parameters are used by the scheduler to ensure that all necessary 
resources will be dedicated to the job when it runs. The job script also includes the commands 
necessary to complete the job; usually this is a command to run a single program but any 
number of shell commands can be used. 

The job scheduler on Canaan is SLURM. A very simple SLURM job script to run a single 
instance of the Python program ​my_prog.py ​ might look like 

#!/bin/bash 

#SBATCH --job-name=my_prog 

#SBATCH --ntasks=1 

#SBATCH --time=00:20:00 

#SBATCH --output=my_prog-%j.out 

#SBATCH --error=my_prog-%j.err 

srun python ./my_prog.py 

10 



The first line is required and indicates the shell interpreter that will be used to process the job 
script. Each line beginning with ​#SBATCH ​ sets one or more SLURM parameters. In this example 
the parameters set are 

1. the job name 
2. the number of tasks (parallel processes) 
3. the maximum time for the job in HH:MM:SS format 
4. the name of the standard output file (​%j ​ is replace by a unique job number) 
5. the name of the standard error file 

The ​sbatch ​ command is used to submit a batch job. For example, suppose the batch job file is 
named ​my_prog.sh ​. The “​.sh ​” extension indicates the file is a bash shell script file.  The 
extension can be anything as long as the first line in the file is ​#!/bin/bash ​. Submitting the 
batch job is done with 

sbatch my_prog.sh 

If all the necessary resources are available the job will start running and you will see a message 
indicating the job has been submitted. If needed resources are allocated to other jobs you will 
see a message indicating the job has been queued until resources become available. 

Suppose you want to run many copies of this program all at the same time. Only two changes 
are necessary: 

1. set the desired number of tasks using the ​--ntasks ​ directive 
2. use the ​srun ​ command when running the program: 

#!/bin/bash 

#SBATCH --job-name=my_prog_parallel 

#SBATCH --ntasks=24 

#SBATCH --time=00:20:00 

#SBATCH --output=my_prog_parallel-%j.out 

#SBATCH --error=my_prog_parallel-%j.err 

srun python ./my_prog.py 

In this case 24 instances of the program will be run. 

Note that it is possible to override #​SBATCH ​ directives in the batch file on the sbatch command 
line. The command 

sbatch --ntasks=24 my_prog.sh 

will cause the job to use 24 tasks regardless of the number of tasks requested in the file. 

11 



Batch Job-Script Template 

Job-script program names should have the suffix "​.sh ​" or "​.sbatch ​" and should not contain 
any whitespace (i.e., do not use spaces in the file name). It is often helpful to add some extra 
lines to the job-script to provide additional information about the job (time started, time finished, 
working directory, etc.)  Below is a template that you can use cut-and-paste to create a 
job-script with some of these features. To use it, just replace the text bracketed by the ​<FIXME> 
and ​</FIXME> ​ tags. Refer to the ​sbatch ​ manual page for more information about the various 
directives. 

#!/bin/bash 

### SLURM/SBATCH bash script 

### 

### ************************************************************************* 

### * NOTE: The lines that begin with #SBATCH ("pound-SBATCH") are batch    * 

### *       scheduler directives, so they are absolutely crucial.           * 

### *       DON'T REMOVE THE pound sign (#) from before the SBATCH!!!!      * 

### *       Any additional pound signs in front of SBATCH will disable      * 

### *       the scheduler directive.                                        * 

### *                                                                       * 

### * NOTE: If you create any file of human-readable text on a Windows      * 

### *       machine, you *MUST* perform the following command on it:        * 

### *                                                                       * 

### *           dos2unix <filename>                                         * 

### *                                                                       * 

### *       This is because virtually all text editors in Windows embed     * 

### *       hidden special characters in text files and these hidden        * 

### *       special characters can cause Unix/Linux programs to fail.       * 

### ************************************************************************* 

### 

### Submit a batch job:  sbatch <script_name> 

### 

### See queued jobs:     squeue 

### 

### See job history 

###  - current day:      sacct 

###  - from date:        sacct -S 2017-01-01 

###  - all users:        sacct -a 

###  - including nodes:  sacct -o jobid,jobname,user,state,alloccpus,nodelist 

### 

### Cancel a batch job:  scancel <jobid> 

### 

### ------------------------------------------------------------------------- 

 

### Set the job name 

#SBATCH --job-name=<FIXME>job_name (no spaces in name)</FIXME> 

 

### Define output file names 

#SBATCH --output=<FIXME>job_name</FIXME>-%j.out 

12 



#SBATCH  --error=<FIXME>job_name</FIXME>-%j.err 

 

### Specify the number of CPUs for this job: 

### to run N tasks on any available CPU cores, use 

###   #SBATCH --ntasks=N 

### 

### to run N tasks, each using M CPU cores, use 

###   #SBATCH --ntasks=N 

###   #SBATCH --cpus-per-task=M 

### 

### to run N tasks, with at most M tasks on a node, use 

###   #SBATCH --ntasks=N 

###   #SBATCH --ntasks-per-node=M 

### 

### to run N tasks, each with exclusive access to the GPU, use 

###   #SBATCH --ntasks=N 

###   #SBATCH --gres=gpu 

### 

#SBATCH --ntasks=1 

 

### Specify the anticipated run-time for this job using HH:MM:SS format 

#SBATCH --time=00:05:00 

 

### Send email when job aborts or completes 

#SBATCH --mail-type=END 

#SBATCH --mail-type=FAIL 

#SBATCH --mail-user=<FIXME>firstname.lastname@gordon.edu</FIXME> 

 

### Display the job context 

echo "********************************************************************" 

echo "* JOB: ${SLURM_JOB_NAME}" 

echo "* JOB ID: ${SLURM_JOB_ID}" 

echo "* Directory is $(pwd)" 

echo "* Using ${SLURM_NTASKS} task$(((SLURM_NTASKS>1)) && echo s) across\ 

 ${SLURM_JOB_NUM_NODES} node$(((SLURM_JOB_NUM_NODES>1)) && echo s) with\ 

 ${SLURM_CPUS_PER_TASK:-1} CPU core$(((SLURM_CPUS_PER_TASK>1)) && echo s)\ 

 per task" 

echo "* Start time is $(date)" 

echo "********************************************************************" 

echo 

 

### Run the job. 

srun <FIXME>executable command</FIXME> 

 

### All done, finish up. 

echo 

echo "********************************************************************" 

echo "* End time is $(date)" 

echo "********************************************************************" 

 

13 



Stopping Jobs 

Jobs can be killed and removed from the system using the ​scancel ​ command. Every SLURM 
job has a job ID which is reported by ​srun ​ or ​sbatch ​ when the job is started. You can also find 
the job ID by running the ​squeue ​ command. Run ​scancel ​ with a job's ID to cancel it. For 
example, if the job ID is 2378, one would type 

scancel 2378 

Using MPI For Parallel Programming 
Selecting an MPI version to use 

There are two different implementations of MPI available on this system, ​OpenMPI​ and ​MPICH​, 
both of which conform to the MPI standard. You must choose one of them and load it using the 
module load command before compiling or running an MPI program. As of January 2016 ​you 
are advised to use OpenMPI​ as it uses an InfiniBand network to connect nodes; this is ​much 
faster​ than the TCP/Ethernet used by our installation of MPICH. 

To select OpenMPI, type 

module load openmpi 

To select MPICH, type 

module load mpich 

To change from one implementation to another you only need to load the version you want to 
use; the other will be replaced automatically. 

You can determine which implementation is currently loaded by typing ​module list ​. 

Compiling MPI programs 

Once an MPI module is loaded you can compile MPI programs. The following compiler 
front-ends are available with all installed MPI distributions: 

■ mpicc ​: C compiler 
■ mpic++ ​: C++ compiler (also could use ​mpicxx ​) 
■ mpif77 ​: Fortran 77 compiler 
■ mpif90 ​: Fortran 90 compiler 

The front-ends take care of locating the ​mpi.h ​ header and linking the MPI libraries when an 
executable is built. For the most part you can use them just as you would one of the GNU 
compilers. For example, a C++ program can be compiled with 

14 

http://www.open-mpi.org/
http://www.mpich.org/


mpic++ -O2 -o myprog myprog.cc 

Running MPI Programs 

Note:​ As of January 2016 it is ​highly recommended that you use OpenMPI over MPICH 
since it uses the InfiniBand network (much faster than 1 Gig Ethernet). 

The SLURM command ​srun ​ can be used to run MPI-based programs on the cluster. A typical 
usage is 

srun -n 48 ./my_mpi_prog 

(remember that the ​-n ​ flag is short for ​--ntasks ​). This allocates 48 cores and runs 
my_mpi_prog ​ using these cores. Another example is 

srun --ntasks=48 --ntasks-per-node=4 --exclusive my_mpi_prog 

This does the same thing except it limits the number of jobs assigned to each node to 4 and 
requires that no other jobs are running on the node. Please read the ​srun ​ man page for more 
information on the options available to this command. 

A simple ​sbatch ​ script to run the same program might look like 

#!/bin/bash 

#SBATCH --job-name=my_mpi_prog 

#SBATCH --ntasks=48 

#SBATCH --ntasks-per-node=4 

#SBATCH --exclusive 

#SBATCH --time=00:20:00 

#SBATCH --output=my_mpi_prog-%j.out 

#SBATCH --error=my_mpi_prog-%j.err 

mpiexec ./my_mpi_prog 

See the Batch Job-Script Template section above for more information. 

Monitoring with Ganglia 
Ganglia​ is a web-based monitor system with a graphical user interface. Browse to 
http://canaan.phys.gordon.edu/ganglia/?c=Canaan&m=load_one&r=hour&s=by%20name&hc=3
&mc=2​ to see the current status and recent history of the Canaan cluster. 

 

15 

http://ganglia.sourceforge.net/
http://canaan.phys.gordon.edu/ganglia/?c=Canaan&m=load_one&r=hour&s=by%20name&hc=3&mc=2
http://canaan.phys.gordon.edu/ganglia/?c=Canaan&m=load_one&r=hour&s=by%20name&hc=3&mc=2

