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What is a proof?

One thing that high-school and college students often say they appreciate
about mathematics is that “answers are either right or wrong.”

While this isn’t always true, it is the case that a large part of mathematics
is focused on knowing if something is always true, sometimes true, or never
true. This knowledge is without ambiguity—we can know it for certain.
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What is a proof?

The proof of a proposition is an argument that will convince any reader
with suitable background that the proposition is always true.

Mathematical proofs are often written in a formal style, but that is not
required. Proofs can come in many different forms, but mathematicians
writing proofs often strive for conciseness and clarity...

...well, at least they should be clear to other mathematicians. ,
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Theorems

Definition

A theorem is a statement that is true and has been proved to be true.

Not surprisingly, some theorems are more significant than others.
Arithmetic, Algebra, and Calculus all have theorems named “The
fundamental theorem of...” From arithmetic we have

Theorem (The Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be represented in exactly one way
(apart from rearrangement) as a product of one or more primes.
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Types of Theorems

Our text uses the term proposition to mean a statement which is true,
but not important enough to be called a theorem. (In other contexts, a
proposition can merely be a statement which is either true or false; at least
until it is proved true).

A lemma is a theorem whose main purpose is to help prove a more
substantial theorem.

A corollary to a theorem is a result that can be established easily once the
theorem is proved.
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The Chicken and Egg Problem

Proving a theorem often involves making deductions using the rules of
inference. These deductions move us from some statement or statements
known to be true to one or more new statements that we can know are
true.

To use this approach, however, we need to start somewhere...

Our starting points will be definitions and axioms (also called postulates).
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Definitions

We begin with some key definitions that we will use frequently.

Definition

An integer n is even if n = 2a for some integer a ∈ Z.

Definition

An integer n is odd if n = 2a + 1 for some integer a ∈ Z.

Definition

Two integers have the same parity if they are both even or they are both
odd. Otherwise they have opposite parity.

As noted in our text, definitions are often worded to sound like an
implication (if-then), but really they should be treated like a biconditional
(if-and-only-if).
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Closure

Definition

Let S be a set of numbers. S is closed under addition if the sum of any
two elements in S is a member of S .

Similar definitions exist for closure under subtraction, multiplication, and
division.

N is closed under what operations?

addition and multiplication, but
not subtraction or division.

Z is closed under what operations? addition, subtraction, and
multiplication, but not division.

Q is closed under what operations? all four, if we disallow division by
zero.

R is closed under what operations? all four, if we disallow division by
zero.
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Divisibility

Definition

Suppose a and b are integers. We say that a divides b, written a|b, if
b = ac for some c ∈ Z. We say a is a divisor of b and b is a multiple of
a. To say a does not divide b, we write a - b.

Be careful; a|b is not the same as a/b.

a|b is a statement that means a divides b; it is either true or false.

a/b is a mathematical operation that yields a numerical result.

Note that if a|b, then b/a is an integer.

Example

Finding the set of divisors of 10 means finding every a such that a|10. The
set is {a : a|10} = {−10,−5,−2,−1, 1, 2, 5, 10}.
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Prime Numbers

Definition

A natural number n is prime if it has exactly two positive divisors, 1 and
n. An integer m is composite if it factors as n = ab where a, b > 1.

Note:

1 is not prime because it has only one divisor, itself.

2 is the only even prime number.

MAT231 (Transition to Higher Math) Direct Proof Fall 2014 11 / 24



Division Algorithm

Definition (The Division Algorithm)

Given integers a and d with d > 0, there exist unique integers q and r for
which a = dq + r and 0 ≤ r < d . We call d the divisor, q is the
quotient, and r is the remainder.

Note: The remainder r is zero if d |a, otherwise it is a positive number
strictly less than the divisor d .

If the division algorithm is applied to 56÷ 20, we have

56 = 20 · 2 + 16

so the quotient is 2 and the remainder is 16.

Be careful with negative numbers! Remember the remainder must always
be non-negative: −31÷ 7 gives −31 = 7 · (−5) + 4.
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GCD and LCM

Definition

The greatest common divisor (GCD) of integers a and b, denoted
gcd(a, b), is the largest integer that divides both a and b. The least
common multiple (LCM) of non-zero integers a and b, denoted lcm(a, b),
is the smallest positive integer that is a multiple of both a and b.

While the GCD of a and b is relative easy to find if the prime factorizations
of both a and b are available. If not, one can use the Euclidean Algorithm.
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Euclidean Algorithm to find the GCD

The Euclidean Algorithm is based upon the following lemma:

Lemma

Let a = bq + r where a, b, q, and r are integers with b > 0, and
0 ≤ r < b. Then gcd(a, b) = gcd(b, r).

Proof.

Suppose d divides both a and b. Then d divides bq and also divides
a− bq = r . Thus, d divides both b and r .

Now suppose that d divides b and r . Then d also divides bq + r = a and
so d divides both a and b.

Since every divisor of a and b is also a divisor of b and r and vice versa,
the sets of divisors for these two pairs are identical and the must share the
same greatest value. Therefore gcd(a, b) = gcd(b, r).

MAT231 (Transition to Higher Math) Direct Proof Fall 2014 14 / 24



Euclidean Algorithm to find the GCD

Lets use the Euclidean Algorithm to find gcd(38, 22). The colors show how
the numbers move from one line to the next based on the lemma we just
proved.

a = b · q + r

38 = 22 · 1 + 16
22 = 16 · 1 + 6
16 = 6 · 2 + 4

6 = 4 · 1 + 2
4 = 2 · 2 + 0

The last non-zero remainder 2 is the GCD of both 2 and 4. By our lemma
it is also the GCD of 4 and 6, and of 6 and 16, etc., all the way back to
our original pair 38 and 22.
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Direct Proof

During our study of proofs, we will use several approaches. The most
straight forward, called direct proof, proves the a proposition in the form

If P, then Q

by assuming P (called the hypothesis) is true and, through a sequence of
logical deductions, shows that Q (the conclusion) must be true.

Some hints:

Be sure you are convinced the proposition you are trying to prove
seems true. Try some examples and look for patterns you can exploit.

Be sure you know what the conclusion should be. Think of proofs as
like doing a problem where you know what the answer should be –
you are trying to work toward it. In a very real sense you’re trying to
build a bridge from the hypothesis to the conclusion.
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Direct Proof Example 1

Proposition

The sum of an even integer and an odd integer is odd.

Some things to consider:

First question: do we believe this proposition? 2 + 3 = 5,
28 + 437 = 465, −120 + 35 = 85 all confirm the proposition. X

It may be helpful to reword the proposition as an implication.
Something like “If a is an even integer and b is an odd integer, then
a + b is odd.”

We want to start with the hypothesis “a is an even integer and b is
an odd integer” and work our way to the conclusion: a + b is odd.

What does it mean for a to be even? From our definition, we know
that a = 2m for some integer m. Similarly, we know that if b is odd,
then b = 2n + 1 for some integer n.

We know the result we need: a + b is odd. Working backward, we
need to find that a + b = 2c + 1 for some integer c .
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Direct Proof Example 1

Proposition

The sum of an even integer and an odd integer is odd.

Proof.

Suppose a is an even integer and b is an odd integer. Then, by our
definitions of even and odd numbers, we know that integers m and n exist
so that a = 2m and b = 2n + 1. Then

a + b = (2m) + (2n + 1) = 2(m + n) + 1 = 2c + 1

where c = m + n is an integer by the closure property of addition. We
have shown that a + b = 2c + 1 for an integer c so a + b must be odd.
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Direct Proof Example 2

Proposition

Suppose a, b, c ∈ Z. If a|b and b|c, then a|c.

Our strategy will be to work forward from the hypothesis and work
backward from the conclusion, trying to link the ends of the argument
together.

We start with a|b and b|c . This means that b = am and c = bn for
some m, n ∈ Z.

Working backward from a|c , we have that c = ak for some k ∈ Z.
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Direct Proof Example 2

Proposition

Suppose a, b, c ∈ Z. If a|b and b|c, then a|c.

Proof.

Let a, b, c ∈ Z. If a|b and b|c then by the definition of divisibility there are
integers m and n for which b = am and c = bn. In this case

c = bn = (am)n = a(mn) = ak

where k = mn. Since c is a multiple of a, by the definition of divisibility
we see that a|c .
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Proof by Cases

Sometimes it is not possible to construct a single “path” from hypothesis
to conclusion.

In such cases we can use a proof by cases. Consider the following
proposition:

Proposition

For any integer n, n2 + n is even.

This could be restated as “If n ∈ Z, then n2 + n is even.”

How can we start with an integer n and work to show n2 + n is even?

We know we need to end up with n2 + n = 2q for some integer q, but
how do we get there?

We’ll try two cases: n even and then n odd.
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Proof by Cases Example 1

Proposition

For any integer n, n2 + n is even.

Proof.

Suppose n ∈ Z.

Case 1. If n is even we can write n = 2q for some q ∈ Z. In this case
n2 + n = 4q2 + 2q = 2(2q2 + q) which, by definition, is even.

Case 2. If n is odd then n = 2q + 1 for some q ∈ Z. Now
n2 + n = (4q2 + 4q + 1) + (2q + 1) = 2(2q2 + 3q + 1) which
is also even.

We find that n2 + 2 is even when n is even and when n is odd. Therefore
n2 + n must be even for any integer n.
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Proof by Cases Example 2

Proposition

Suppose n ∈ Z. If n is not divisible by 3, then n2 + 2 is divisible by 3.

Proof.

Let n ∈ Z be given. By the Division Algorithm we can write n = 3q + r for
some q, r ∈ Z with 0 ≤ r < 3. If r = 0 then 3|n, so we consider the other
two cases, r = 1 and r = 2.

Case 1. Suppose r = 1 so n = 3q + 1, which is not divisible by 3.
However, n2 + 2 = 9q2 + 6q + 3 = 3(3q2 + 2q + 1), so
n2 + 2 is divisible by 3.

Case 2. Now suppose r = 2 so n = 3q + 2. As before, this is not
divisible by 3. On the other hand, 3 does divide n2 + 2 since
n2 + 2 = 9q2 + 12q + 4 + 2 = 3(3q2 + 4q + 1).

Reviewing these cases, we see that whenever 3 - n, we find 3|(n2 + 2),
completing the proof.
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Proof Exercises

Write proofs for the following propositions.

1 If the integers m and n are both divisible by 3, then the number mn is
divisible by 9.

2 Suppose a, b ∈ Z. If a|b, then a2|b2.

3 Every perfect square is either a multiple of 4 or of the form 4q + 1 for
some integer q.

4 The sum of any two rational numbers is a rational number.
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