
import java.util.List;
import java.util.ArrayList;
import java.util.Date;

/** Representation for Major League Baseball
 */
public class MLB
{
	 private League [] league;
	 private List<Season> pastSeasons;
	 private Season currentSeason;
	
	 /** Constructor
	 */
	 public MLB()
	 { league = new League[2];
	 league[0] = new League(this, "American");
	 league[1] = new League(this, "National");
	 pastSeasons = new ArrayList<Season>();
	 }
	
	 /** Start a new season
	 *	 @param year the year for the season
	 */
	 public void startSeason(int year)
	 { if (currentSeason != null)
	 	 pastSeasons.add(currentSeason);
	 currentSeason = new Season(year);
	 }
}

/** Representation for one of the leagues of Major
 * League Baseball
 */
class League
{
	 private MLB mlb;
	 private String name;
	 private Division [] division;
	
	 /** Constructor
	 *	 @param mlb the object representing Major League Baseball
	 *	 @param name the name of this league
	 */
 League(MLB mlb, String name)
 { this.mlb = mlb;
 this.name = name;
 division = new Division[3];
 division[0] = new Division(this, "Eastern");
 division[1] = new Division(this, "Central");
 division[2] = new Division(this, "Western");
	 }
	
	 /** Accessor for name
	 *	 @return the name of this league
	 */
	 public String getName()
	 { return name; }
}

/** Representation for one of the divisions of an MLB league
 */
class Division
{
	 private League league;
	 private String name;
	 private List<Team> teams;

	 /** Constructor
	 *	 @param league the league to which this division belongs
	 *	 @param name the name of this division
	 */
	 Division(League league, String name)
	 { this.league = league;
	 this.name = league.getName() + " " + name;
	 teams = new ArrayList<Team>();
	 }

	 /** Accessor for name
	 *	 @return the name of this division
	 */
	 public String getName()
	 { return name; }

	 /** Add a team to this division
	 *	 @param team the team to add
	 */
	 public void addTeam(Team team)
	 { teams.add(team); }

	 /** Remove a team from this division
	 *	 @param team the team to remove
	 */
	 public void removeTeam(Team team)
	 { teams.remove(team); }
}

/** Representation for a Major League Baseball team
 */
class Team
{
	 private Division division;
	 private String name;
	 private List<Player> players;
	 private List<Game> homeGames;
	 private List<Game> awayGames;
	
	 /** Constructor
	 *	 @param division the division to which this team belongs
	 *	 @param name the name of this team
	 */
	 Team(Division division, String name)
	 { this.division = division;
	 this.name = name;
	 players = new ArrayList<Player>();
	 }

	 /** Accessor for name
	 *	 @return the name of this division
	 */
	 public String getName()
	 { return name; }

	 /** Move this team to a different division
	 *	 @param newDivision the division to move to
	 */
	 public void changeDivision(Division newDivision)
	 { division.removeTeam(this);
	 newDivision.addTeam(this);
	 division = newDivision;
	 }

	
	 /** Add a player to this team
	 * @param player the player to add
	 */
	 public void addPlayer(Player player)
	 { players.add(player); }
	
	 /** Remove a player from this team
	 *	 @param player the player to remove
	 */
	 public void removePlayer(Player player)
	 { players.remove(player); }
	
	 /** Add a home game to the list of home games
	 *	 @param game the game to add
	 */
	 public void addHomeGame(Game game)
	 { homeGames.add(game); }
	
	 /** Add an away game to the list of away games
	 *	 @param game the game to add
	 */
	 public void addAwayGame(Game game)
	 { awayGames.add(game); }
}

/** Representation for a Major League Baseball player
 */
class Player
{
	 private Team team;
	 private String name;
	
	 /** Constructor
	 *	 @param team the (initial) team for the player -
 	 * null if not yet assigned
	 *	 @param name the player's name
	 */
	 public Player(Team team, String name)
	 { this.team = team;
	 this.name = name;
	 }
	
	 /** Move this player to a different team
	 *	 @param newTeam the new Team.
	 * If null the player is not on any team
	 */
	 public void changeTeam(Team newTeam)
	 { if (team != null)
	 	 team.removePlayer(this);
	 if (newTeam != null)
	 newTeam.addPlayer(this);
	 team = newTeam;
	 }
}

/** Representation for a Major League Baseball Season
 */
class Season
{
	 private int year;
	 private List<Game> games;
	
	 /** Constructor
	 *	 @param year the year for this season
	 */
	 public Season(int year)
	 { this.year = year;
	 games = new ArrayList<Game>();
	 }
	
	 /** Accessor for the year of this season
	 *	 @return the year
	 */
	 public int getYear()
	 { return year; }
	
	 /** Add a game to the list of games
	 *	 @param game the game to add
	 */
	 public void addGame(Game game)
	 { games.add(game); }
}

/** Representation for a single game
 */
class Game
{
	 private Season season;
	 private Date date;
	 private Team home;
	 private Team visitor;
	 private Umpire [] umpire;
	 private int homeScore;
	 private int visitorScore;
	
	 /** Constructor
	 *	 @param season the season for this game
	 *	 @param date the date of this game
	 *	 @param home the home team for this game
	 *	 @param visitor the visitor team for this game
	 */
	 public Game(Season season,
	 	 	 	 Date date,
	 	 	 	 Team home,
	 	 	 	 Team visitor)
	 { this.season = season;
	 this.date = date;
	 this.home = home;
	 this.visitor = visitor;
	 home.addHomeGame(this);
	 visitor.addAwayGame(this);
	 // Scores are left at default initial value of 0
	 // until the game is played
	 // Umpires are recorded when umpires are assigned
	 }
	

	 /** Accessor for the year of this game
	 *	 @return the year
	 */
	 public int getYear()
	 { return season.getYear(); }
	
	 /** Accessor for the date of this game
	 *	 @return the date
	 */
	 public Date getDate()
	 { return date; }
	
	 /** Assign the umpires for this game
	 *	 @param plateUmp the home plate umpire
	 *	 @param firstBaseUmp the first base umpire
	 *	 @param secondBaseUmp the second base umpire
	 *	 @param thirdBaseUmp the third base umpire
	 */
	 public void assignUmpires(Umpire plateUmp,
	 	 	 	 	 	 	 Umpire firstBaseUmp,
	 	 	 	 	 	 	 Umpire secondBaseUmp,
	 	 	 	 	 	 	 Umpire thirdBaseUmp)
	 { umpire = new Umpire[4];
	 umpire[0] = plateUmp;
	 umpire[1] = firstBaseUmp;
	 umpire[2] = secondBaseUmp;
	 umpire[3] = thirdBaseUmp;
	 for (int i = 0; i < umpire.length; i ++)
	 	 umpire[i].addGame(this);
	 }
}

/** Representation for an umpire
 */
class Umpire
{
	 private String name;
	 private List<Game> gamesAssignedTo;
	
	 /** Constructor
	 *	 @param name the umpire's name
	 */
	 public Umpire(String name)
	 { this.name = name;
	 this.gamesAssignedTo = new ArrayList<Game>();
	 }
	
	 /** Add a game to the list of games assigned to
	 *	 @param game the game
	 */
	 public void addGame(Game game)
	 { gamesAssignedTo.add(game); }
}
	

	
	

	
	

