
CPS 220 – Theory of Computation 
Non-regular Languages 
 
Warm up Problem 
 
Problem #1.48 (p.90) 
 
Let Σ={0,1} and let 
D={w|w contains an equal number of occurrences of the substrings 01 and 10}. 
 
Thus 101  ∈  D because 101 contains a single 01 and a single 10, but 1010 !  D because 
1010 contains two 10s and only one 01.  Show that D is a regular language. 
 
Solution: 
This language is regular because it can be described by a regular expression and a FA 
(NFA): 
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Proving that a language is not regular—the Pumping Lemma 
 
Consider the language B = { 0n1n | n ≥ 0 }. Is B regular? 
 
If B is regular, then there is a DFA M recognizing B. That means, M accepts the string 
0200312003,  
but rejects the string 0200311999. How can M achieve that? As it reads the input, it has to 
remember 
 how many 0s it encountered so far. Then, when it starts reading 1s, it has to count the 1s 
and match 
 them with the number of 0s. However, a DFA by definition is finite, i.e., it has limited 
memory, which 
 is just the current state in which it is. To count it would require enough bits of memory to 
store a number… 
 
How can we prove that a language is not regular? We will now demonstrate a method of 
doing that. 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++ 
 
Theorem. The Pumping lemma. If A is a regular language, then there is a number p 
(the pumping length) 
 where, if s is any string in A of length at least p, then s may be divided into three pieces, 
s = xyz, satisfying 



 the following conditions: 
1. for each i ≥ 0, xyiz ∈ A 
2. |y| > 0 
3. |xy| ≤ p 
 
Note: either x or z may be !  
 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++ 
So if s is long enough, there is a nonempty string y within s, which can be “pumped”. 
 
===============================================================
====== 
In other words: If a language A is accepted by a DFA M with q states, then every string s 
in A  

with |s|>=q can be written as s = xyz such that Azxyandy !"
*#  

===============================================================
====== 
 
Proof. If A is regular, then there is a DFA M that accepts A. 
 
Say that M has p states. 
Let s be a string of length n ≥ p. Let r1…rn+1 be the sequence of states of M, when 
processing s.  
Since n+1 > p, at least one of M’s states appears twice: ri = rj for j ≠ i. 
Let x = s1…si, y = si+1…sj, z = sj+1…sn. Then, xyz = s1…sn = s, and |y| > 0. 
 
Here is why xyiz  is accepted by M: 



 
How can we maintain this condition - |xy| ≤ p? We can make sure that this is true, by 
selecting the smallest i and j such that ri = rj.   
The first p+1 states in the sequence must contain a repetition - therefore |xy| ≤ p. 
 
 
Pigeonhole principle -  if p pigeons are placed into fewer than p holes, some hole has to 
have more than one pigeon in it. 
 
 
 
Example of using the Pumping Lemma 
 
Theorem. B = { 0n1n | n ≥ 0 } is not regular.  
 
Proof.  Proof by contradiction.   
 
Assume that language B is regular.  [If B is regular, then there exists a constant p 
 (the pumping length) such that the conditions of the pumping lemma hold.]  Let p be the 
pumping length 
and let's choose a string s that fits the conditions for our pumping lemma. Let s = 0p1p.  
Because s ∈ B 
and |s| ≥ p - then s can be broken into xyz where for any i ≥ 0 the string xyiz ∈ B. 
 
Must consider 3 cases: 
Case 1: 
 
The substring y consists of only 0s.  In this case the string xyyz has more 0s than 1s and 
therefore 



xyyz !  B. This case is a contradiction. 
 
Case 2: 
 
The string y consists of only 1s.  For the same basic reason, this case is a contradiction. 
 
Case 3: 
 
The string y consists of both 0s and 1s.  In this case the string xyyz may have the same 
number of 
1s and 0s - however it violates the basic structure of the language - where all 0 come 
before 
all 1s.  This case is a contradiction 
 
Thus a contradiction is unavoidable. 



Definition. The complement of a language A, =A Σ* - A, is all strings except those in A. 
 
Theorem. Regular languages are closed under complementation. 
 
Proof. Let A be a regular language. We will show that A  is regular. 
 
Since A is regular, a DFA M accepts it. 
 
By turning all the accept states of M into non-accept, and all non-accept states into 
accept, every input in A ends up in a non-accept state, and every input not in A ends up in 
an accept state. Therefore, the modified M machine accepts A . 
 
 
Theorem. Regular languages are closed under intersection, ∩. 
 
Proof. Recall that if A and B are two sets, A ∩ B is the set of all the common elements. 
 
A simple logic fact that you can prove as an exercise is that: 

BABA !="  
Then, the result follows by closure of regular languages under complement and union. 
 
 
Theorem. A = { w | w has an equal number of 0s and 1s } is not regular. 
 
Proof. Assume that A is regular, in order to arrive at a contradiction.  (Very cool proof) 
 
We know that 0*1* is regular. 
Therefore A ∩ (0*1*) is regular, by closure of regular languages under ∩. 
 
However, A ∩ (0*1*) = { 0n1n | n ≥ 0 }, which we proved not to be regular. 
Therefore A cannot be regular. 
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Another pumping lemma proof: 
 
Theorem. A = { 0p | p is a prime} is not a regular language. 
 
Proof. Assume that A is regular, in order to arrive at a contradiction.  
Then A is accepted by a DFA M.  Let s be the number of states in M.  Consider a prime 
number p > s.   
Note that 0p ∈ A and |0p|=p > s. Therefore, by the pumping lemma, 0p can be written as 
0p = xyz such that |y| > 0 and xyiz ∈ A 
 
Let i = |x|+|z| and j = |y|.  Then, the condition xy*z ∈ A means that, for any k>=0, i+kj is a 
prime.   
In particular , when k = 0 it means that i is a prime.  So i >=2. When k = i, this means that 
i(1 + j) is a prime.   
However, since |y|>0 (not the empty string), we have j = |y|>=1 and so i(1+j) is not prime.  
This is a contradiction. 
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