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Definition of a matrix

A matrix is a rectangular two-dimensional array of numbers.

We say a matrix is m × n if it has m rows and n columns.

These values are sometimes called the dimensions of the matrix.

Note that, in contrast to Cartesian coordinates, we specify the
number of rows (the vertical dimension) and then the number of
columns (the horizontal dimension).

In most contexts, the rows and columns are numbered starting with 1.

Several programming APIs, however, index rows and columns from 0.

We use aij to refer to the entry in i th row and j th column of the
matrix A.
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Matrices are extremely important in HPC

While it’s certainly not the case that high performance computing
involves only computing with matrices, matrix operations are key to
many important HPC applications.

Many important applications can be “reduced” to operations on
matrices, including (but not limited to)

1 searching and sorting
2 numerical simulation of physical processes
3 optimization

The list of the top 500 supercomputers in the world (found at
http://www.top500.org) is determined by a benchmark program
that performs matrix operations.

Like most benchmark programs, this is just one measure, however,
and does not predict the relative performance of a supercomputer on
non-matrix problems, or even different matrix-based problems.
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Dense matrices

The m × n matrix A is dense if all or most of its entries are nonzero.

Storing a dense matrix (sometimes called a full matrix) requires
storing all mn elements of the matrix.

Usually an array data structure is used to store a dense matrix.
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Dense matrix example
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Find a matrix to represent this
complete graph if the ij entry
contains the weight of the edge
connecting node corresponding to
row i with the node corresponding to
column j . Use the value 0 if a
connection is missing.



0 1 2 3 4 5
1 0 6 7 8 9
2 6 0 10 11 12
3 7 10 0 13 14
4 8 11 13 0 15
5 9 12 14 15 0
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Dense matrix example



0 1 2 3 4 5
1 0 6 7 8 9
2 6 0 10 11 12
3 7 10 0 13 14
4 8 11 13 0 15
5 9 12 14 15 0


Note:

This is considered a dense matrix even though it contains zeros.

This matrix is symmetric, meaning that aij = aji .

What would be a good way to store this matrix?
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Sparse matrices

A matrix is sparse if most of its entries are zero.

Here “most” is not usually just a simple majority, rather we expect
the number of zeros to far exceed the number of nonzeros.

It is often most efficient to store only the nonzero entries of a sparse
matrix, but this requires that location information also be stored.

Arrays and lists are most commonly used to store sparse matrices.
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Sparse matrix example

A

B

C

D

E

F

3

5

6

9

14

15

Find a matrix to represent this graph
if the ij entry contains the weight of
the edge connecting node
corresponding to row i with the node
corresponding to column j . As
before, use the value 0 if a
connection is missing.

0 0 0 3 0 5
0 0 6 0 0 9
0 6 0 0 0 0
3 0 0 0 0 14
0 0 0 0 0 15
5 9 0 14 15 0
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Sparse matrix example

Sometimes its helpful to leave out the zeros to better see the structure of
the matrix

0 0 0 3 0 5
0 0 6 0 0 9
0 6 0 0 0 0
3 0 0 0 0 14
0 0 0 0 0 15
5 9 0 14 15 0

 =



3 5
6 9

6
3 14

15
5 9 14 15


This matrix is also symmetric.

How could it be stored efficiently?
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Banded matrices

An important type of sparse matrices are banded matrices.

Nonzeros are along diagonals close to main diagonal.

Example:

3 1 6 0 0 0 0
4 8 5 0 0 0 0
1 2 1 1 3 0 0
0 1 0 4 2 6 0
0 0 6 9 5 2 5
0 0 0 7 1 8 7
0 0 0 0 4 4 9


=



3 1 6
4 8 5 0
1 2 1 1 3

1 0 4 2 6
6 9 5 2 5

7 1 8 7
4 4 9


The bandwidth of this matrix is 5.
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Using a two-dimensional arrays

It is natural to use a 2D array to store a dense or banded matrix.
Unfortunately, there are a couple of significant issues that complicate this
seemingly simple approach.

1 Row-major vs. column-major storage pattern is language dependent.

2 It is not possible to dynamically allocate two-dimensional arrays in C
and C++; at least not without pointer storage and manipulation
overhead.
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Row-major storage

Both C and C++ (and Java and Python and ...) use what is often called a
row-major storage pattern for 2D arrays.

In C and C++, the last index in a multidimensional array indexes
contiguous memory locations. Thus a[i][j] and a[i][j+1] are
adjacent in memory.

Example:

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

The stride between adjacent elements in the same row is 1. The
stride between adjacent elements in the same column is the row
length (5 in this example).
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Column-major storage

In contrast to this, Fortran stores 2D arrays in column-major form.

The first index in a multidimensional array indexes contiguous memory
locations. Thus a(i,j) and a(i+1,j) are adjacent in memory.

Example:

0 1 2 3 4

5 6 7 8 9

0 5 1 6 2 7 3 8 4 9

The stride between adjacent elements in the same row is the column
length (2 in this example) while the stride between adjacent elements
in the same column is 1.

Notice that if C, Java, or Python is used to read a matrix stored in
Fortran (or vice-versa), the transpose matrix will be read.
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Significance of array ordering

There are two main reasons why HPC programmers need to be aware of
this issue:

1 Memory access patterns can have a dramatic impact on performance,
especially on modern systems with a complicated memory hierarchy.
These code segments access the same elements of an array, but the
order of accesses is different.

Access by rows

for (i = 0; i < 2; i++)

for (j = 0; j < 5; j++)

a[i][j] = ...

Access by columns

for (j = 0; j < 5; j++)

for (i = 0; i < 2; i++)

a[i][j] = ...

2 Many important numerical libraries (e.g. LAPACK) are written in
Fortran. To use them with row-major language the programmer must
often work with a transposed matrix.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 18 / 32



Significance of array ordering

There are two main reasons why HPC programmers need to be aware of
this issue:

1 Memory access patterns can have a dramatic impact on performance,
especially on modern systems with a complicated memory hierarchy.
These code segments access the same elements of an array, but the
order of accesses is different.

Access by rows

for (i = 0; i < 2; i++)

for (j = 0; j < 5; j++)

a[i][j] = ...

Access by columns

for (j = 0; j < 5; j++)

for (i = 0; i < 2; i++)

a[i][j] = ...

2 Many important numerical libraries (e.g. LAPACK) are written in
Fortran. To use them with row-major language the programmer must
often work with a transposed matrix.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 18 / 32



Significance of array ordering

There are two main reasons why HPC programmers need to be aware of
this issue:

1 Memory access patterns can have a dramatic impact on performance,
especially on modern systems with a complicated memory hierarchy.
These code segments access the same elements of an array, but the
order of accesses is different.

Access by rows

for (i = 0; i < 2; i++)

for (j = 0; j < 5; j++)

a[i][j] = ...

Access by columns

for (j = 0; j < 5; j++)

for (i = 0; i < 2; i++)

a[i][j] = ...

2 Many important numerical libraries (e.g. LAPACK) are written in
Fortran. To use them with row-major language the programmer must
often work with a transposed matrix.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 18 / 32



Outline

1 Matrix operations
Importance
Dense and sparse matrices
Matrices and arrays

2 Matrix-vector multiplication
Row-sweep algorithm
Column-sweep algorithm

3 Matrix-matrix multiplication
“Standard” algorithm
ijk-forms

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 19 / 32



Row-sweep matrix-vector multiplication

Row-major matrix-vector product y = A x, where A is M × N:

for (i = 0; i < M; i++)

{

y[i] = 0.0;

for (j = 0; j < N; j++)

{

y[i] += a[i][j] * x[j];

}

}

matrix elements accessed in row-major order

repeated consecutive updates to y[i]. . .

. . . we can usually assume the compiler will optimize this

also called inner product form since the i th entry of y is the result of
an inner product between the i th row of A and the vector x.
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Column-sweep matrix-vector multiplication

Column-major matrix-vector product y = A x, where A is M × N:

for (i = 0; i < M; i++)

{

y[i] = 0.0;

}

for (j = 0; j < N; j++)

{

for (i = 0; i < M; i++)

{

y[i] += a[i][j] * x[j];

}

}

matrix elements accessed in column-major order

repeated updates to y[i], but every element in y array is updated
before any element is updated again.

also called outer product form.
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Matrix-vector algorithm comparison

Which of these two algorithms will run faster? Why?

Row-Sweep Form

for (i = 0; i < M; i++)

{

y[i] = 0.0;

for (j = 0; j < N; j++)

{

y[i] += a[i][j] * x[j];

}

}

Column-Sweep Form

for (i = 0; i < M; i++)

{

y[i] = 0.0;

}

for (j = 0; j < N; j++)

{

for (i = 0; i < M; i++)

{

y[i] += a[i][j] * x[j];

}

}

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 23 / 32



Matrix-vector algorithm comparison

Answer: it depends...

Both algorithms carry out the same operations, but do so in a
different order.

In particular, the memory access patterns are quite different.

The row-sweep form will typically work better using a language like C
or C++ which access 2D arrays in row-major form.

Since Fortran accesses 2D arrays column-by-column, it is usually best
to use the column-sweep form when working in that language.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 24 / 32



Operation counts

To compute the computation rate in FLOP/S, we need to know the
number of FLOPs carried out and the elapsed time.

Divisions are usually the most expensive of the four basic operations,
followed by multiplication. Addition and subtraction are equivalent in
terms of time and faster than multiplication or division.

We usually count all four of these operations, but only when they
involve floating point numbers. We typically ignore integer operations
(e.g. array subscript calculations).

In the case of a matrix-vector product, the innermost loop body
contains a multiplication and an addition:

yi = yi + aijxj

The inner and outer loop are done M and N times respectively, so
there are a total of 2MN FLOPs.
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The textbook algorithm

Consider the problem of multiplying two matrices:

C = AB =

 5 2 3 3 0
1 8 4 2 6
2 3 7 9 2




3 8 2
5 4 0
1 3 6
2 7 5
4 0 2


The standard “textbook” algorithm to form the product C of the M × P
matrix A and the P × N matrix B is based on the inner product.

The cij entry in the product is the inner product (or dot product) of the
i th row of A and the j th column of B.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 27 / 32



The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

for i = 1 to M

for j = 1 to N

c(i,j) = 0

for k = 1 to P

c(i,j) = c(i,j) + a(i,k) * b(k,j)

end

end

end

known as the ijk-form of the product due to the loop ordering

What is the operation count. . . ?

Number of FLOPs is 2MNP.

For square matrices M = N = P = n so number of FLOPs is 2n3.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 28 / 32



The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

for i = 1 to M

for j = 1 to N

c(i,j) = 0

for k = 1 to P

c(i,j) = c(i,j) + a(i,k) * b(k,j)

end

end

end

known as the ijk-form of the product due to the loop ordering

What is the operation count. . . ?

Number of FLOPs is 2MNP.

For square matrices M = N = P = n so number of FLOPs is 2n3.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 28 / 32



The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

for i = 1 to M

for j = 1 to N

c(i,j) = 0

for k = 1 to P

c(i,j) = c(i,j) + a(i,k) * b(k,j)

end

end

end

known as the ijk-form of the product due to the loop ordering

What is the operation count. . . ?

Number of FLOPs is 2MNP.

For square matrices M = N = P = n so number of FLOPs is 2n3.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 28 / 32



The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

for i = 1 to M

for j = 1 to N

c(i,j) = 0

for k = 1 to P

c(i,j) = c(i,j) + a(i,k) * b(k,j)

end

end

end

known as the ijk-form of the product due to the loop ordering

What is the operation count. . . ?

Number of FLOPs is 2MNP.

For square matrices M = N = P = n so number of FLOPs is 2n3.

CPS343 (Parallel and HPC) Matrix Multiplication Spring 2020 28 / 32



The textbook algorithm
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for k = 1 to P
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end

A is accessed row-by-row but B is accessed column-by-column.

The column index i for C varies faster than the row index j , but both
of these are constant with respect to the inner loop. Compilers can
easily optimize this.

Regardless of the language we use (C or Fortran), we have an efficient
access pattern for one matrix but not for the other.

Can we improve things by rearranging the order of operations?
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The ijk forms

From linear algebra we know that column i of the matrix-matrix product
AB is defined as “a linear combination of the columns of A using the
values in the i th column of B as weights.” The pseudocode for this is:

for j = 1 to N

for i = 1 to M

c(i,j) = 0.0

end

for k = 1 to P

for i = 1 to M

c(i,j) = c(i,j) + a(i,k) * b(k,j)

end

end

end

the loop ordering changes but the innermost statement is unchanged

the initialization of values in C is done one column at a time

the operation count is still 2MNP. This is the jki form.
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The ijk forms

Other loop orderings are possible. . .

How many ways can i , j , and k be arranged?

Recall from discrete math that this is a permutation problem.

“three ways to choose the first letter, two ways to choose the second,
and one way to choose the third”: 3 × 2 × 1 = 6

There are six possible loop orderings.

We’ll work with all six during our first hands-on exercise ,.
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