Matrix Multiplication

CPS343

Parallel and High Performance Computing
Spring 2020

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Definition of a matrix

- A matrix is a rectangular two-dimensional array of numbers.
- We say a matrix is $m \times n$ if it has m rows and n columns.
- These values are sometimes called the dimensions of the matrix.
- Note that, in contrast to Cartesian coordinates, we specify the number of rows (the vertical dimension) and then the number of columns (the horizontal dimension).
- In most contexts, the rows and columns are numbered starting with 1.
- Several programming APIs, however, index rows and columns from 0.
- We use $a_{i j}$ to refer to the entry in $i^{\text {th }}$ row and $j^{\text {th }}$ column of the matrix A.

Matrices are extremely important in HPC

- While it's certainly not the case that high performance computing involves only computing with matrices, matrix operations are key to many important HPC applications.
- Many important applications can be "reduced" to operations on matrices, including (but not limited to)
(1) searching and sorting
(2) numerical simulation of physical processes
(3) optimization
- The list of the top 500 supercomputers in the world (found at http://www.top500.org) is determined by a benchmark program that performs matrix operations.
- Like most benchmark programs, this is just one measure, however, and does not predict the relative performance of a supercomputer on non-matrix problems, or even different matrix-based problems.

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Dense matrices

- The $m \times n$ matrix A is dense if all or most of its entries are nonzero.
- Storing a dense matrix (sometimes called a full matrix) requires storing all $m n$ elements of the matrix.
- Usually an array data structure is used to store a dense matrix.

Dense matrix example

Find a matrix to represent this complete graph if the ij entry contains the weight of the edge connecting node corresponding to row i with the node corresponding to column j. Use the value 0 if a connection is missing.

$$
\left[\begin{array}{rrrrrr}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 6 & 7 & 8 & 9 \\
2 & 6 & 0 & 10 & 11 & 12 \\
3 & 7 & 10 & 0 & 13 & 14 \\
4 & 8 & 11 & 13 & 0 & 15 \\
5 & 9 & 12 & 14 & 15 & 0
\end{array}\right]
$$

Dense matrix example

$$
\left[\begin{array}{rrrrrr}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 6 & 7 & 8 & 9 \\
2 & 6 & 0 & 10 & 11 & 12 \\
3 & 7 & 10 & 0 & 13 & 14 \\
4 & 8 & 11 & 13 & 0 & 15 \\
5 & 9 & 12 & 14 & 15 & 0
\end{array}\right]
$$

Note:

- This is considered a dense matrix even though it contains zeros.
- This matrix is symmetric, meaning that $a_{i j}=a_{j i}$.
- What would be a good way to store this matrix?

Sparse matrices

- A matrix is sparse if most of its entries are zero.
- Here "most" is not usually just a simple majority, rather we expect the number of zeros to far exceed the number of nonzeros.
- It is often most efficient to store only the nonzero entries of a sparse matrix, but this requires that location information also be stored.
- Arrays and lists are most commonly used to store sparse matrices.

Sparse matrix example

Find a matrix to represent this graph if the $i j$ entry contains the weight of the edge connecting node corresponding to row i with the node corresponding to column j. As before, use the value 0 if a connection is missing.

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 3 & 0 & 5 \\
0 & 0 & 6 & 0 & 0 & 9 \\
0 & 6 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 14 \\
0 & 0 & 0 & 0 & 0 & 15 \\
5 & 9 & 0 & 14 & 15 & 0
\end{array}\right]
$$

Sparse matrix example

Sometimes its helpful to leave out the zeros to better see the structure of the matrix

$$
\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 3 & 0 & 5 \\
0 & 0 & 6 & 0 & 0 & 9 \\
0 & 6 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 14 \\
0 & 0 & 0 & 0 & 0 & 15 \\
5 & 9 & 0 & 14 & 15 & 0
\end{array}\right]=\left[\begin{array}{llllll}
& & & 3 & 5 \\
& & 6 & & & 9 \\
& 6 & & & \\
3 & & & & 14 \\
& & & & 15 \\
5 & 9 & & 14 & 15 &
\end{array}\right]
$$

- This matrix is also symmetric.
- How could it be stored efficiently?

Banded matrices

- An important type of sparse matrices are banded matrices.
- Nonzeros are along diagonals close to main diagonal.
- Example:

$$
\left[\begin{array}{lllllll}
3 & 1 & 6 & 0 & 0 & 0 & 0 \\
4 & 8 & 5 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 1 & 3 & 0 & 0 \\
0 & 1 & 0 & 4 & 2 & 6 & 0 \\
0 & 0 & 6 & 9 & 5 & 2 & 5 \\
0 & 0 & 0 & 7 & 1 & 8 & 7 \\
0 & 0 & 0 & 0 & 4 & 4 & 9
\end{array}\right]=\left[\begin{array}{lllllll}
3 & 1 & 6 & & & & \\
4 & 8 & 5 & 0 & & & \\
1 & 2 & 1 & 1 & 3 & & \\
& 1 & 0 & 4 & 2 & 6 & \\
& & 6 & 9 & 5 & 2 & 5 \\
& & & 7 & 1 & 8 & 7 \\
& & & & 4 & 4 & 9
\end{array}\right]
$$

- The bandwidth of this matrix is 5 .

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Using a two-dimensional arrays

It is natural to use a 2D array to store a dense or banded matrix. Unfortunately, there are a couple of significant issues that complicate this seemingly simple approach.
(1) Row-major vs. column-major storage pattern is language dependent.
(2) It is not possible to dynamically allocate two-dimensional arrays in C and $C++$; at least not without pointer storage and manipulation overhead.

Row-major storage

Both C and C++ (and Java and Python and ...) use what is often called a row-major storage pattern for 2D arrays.

- In C and $\mathrm{C}++$, the last index in a multidimensional array indexes contiguous memory locations. Thus a[i] [j] and a[i] [j+1] are adjacent in memory.
- Example:

0	1	2	3	4
5	6	7	8	9

0	1	2	3	4	5	6	7	8	9

- The stride between adjacent elements in the same row is 1 . The stride between adjacent elements in the same column is the row length (5 in this example).

Column-major storage

In contrast to this, Fortran stores 2D arrays in column-major form.

- The first index in a multidimensional array indexes contiguous memory locations. Thus $a(i, j)$ and $a(i+1, j)$ are adjacent in memory.
- Example:

0	1	2	3	4
5	6	7	8	9

0	5	1	6	2	7	3	8	4	9

- The stride between adjacent elements in the same row is the column length (2 in this example) while the stride between adjacent elements in the same column is 1 .
- Notice that if C, Java, or Python is used to read a matrix stored in Fortran (or vice-versa), the transpose matrix will be read.

Significance of array ordering

There are two main reasons why HPC programmers need to be aware of this issue:

Significance of array ordering

There are two main reasons why HPC programmers need to be aware of this issue:
(1) Memory access patterns can have a dramatic impact on performance, especially on modern systems with a complicated memory hierarchy. These code segments access the same elements of an array, but the order of accesses is different.

Access by rows

```
for (i = 0; i < 2; i++)
    for (j = 0; j < 5; j++)
    a[i][j] = ...
```

Access by columns

```
for (j = 0; j < 5; j++)
    for (i = 0; i < 2; i++)
    a[i][j] = ...
```


Significance of array ordering

There are two main reasons why HPC programmers need to be aware of this issue:
(1) Memory access patterns can have a dramatic impact on performance, especially on modern systems with a complicated memory hierarchy. These code segments access the same elements of an array, but the order of accesses is different.

Access by rows
Access by columns

```
for (i = 0; i < 2; i++)
    for (j = 0; j < 5; j++)
        a[i][j] = ...
```

for ($\mathrm{j}=0$; j < 5; $\mathrm{j}+\mathrm{+}$)
for (i = 0 ; $i<2$; i++)
$a[i][j]=\ldots$
(2) Many important numerical libraries (e.g. LAPACK) are written in Fortran. To use them with row-major language the programmer must often work with a transposed matrix.

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Row-sweep matrix-vector multiplication

Row-major matrix-vector product $\mathbf{y}=A \mathbf{x}$, where A is $M \times N$:

```
for (i = 0; i < M; i++)
{
    y[i] = 0.0;
    for (j = 0; j < N; j++)
    {
        y[i] += a[i][j] * x[j];
    }
}
```

- matrix elements accessed in row-major order
- repeated consecutive updates to y[i]...
- ... we can usually assume the compiler will optimize this
- also called inner product form since the $i^{\text {th }}$ entry of \mathbf{y} is the result of an inner product between the $i^{\text {th }}$ row of A and the vector \mathbf{x}.

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

Column-sweep matrix-vector multiplication

Column-major matrix-vector product $\mathbf{y}=A \mathbf{x}$, where A is $M \times N$:

```
for (i = 0; i < M; i++)
{
    y[i] = 0.0;
}
for (j = 0; j < N; j++)
{
    for (i = 0; i < M; i++)
    {
        y[i] += a[i][j] * x[j];
    }
}
```

- matrix elements accessed in column-major order
- repeated updates to y [i], but every element in y array is updated before any element is updated again.
- also called outer product form.

Matrix-vector algorithm comparison

Which of these two algorithms will run faster? Why?

```
Row-Sweep Form
for (i = 0; i < M; i++)
{
    y[i] = 0.0;
    for (j = 0; j < N; j++)
    {
        y[i] += a[i][j] * x[j];
    }
}
```

Column-Sweep Form

```
for (i = 0; i < M; i++)
{
    y[i] = 0.0;
}
for (j = 0; j < N; j++)
{
    for (i = 0; i < M; i++)
    {
        y[i] += a[i][j] * x[j];
    }
}
```


Matrix-vector algorithm comparison

Answer: it depends...

- Both algorithms carry out the same operations, but do so in a different order.
- In particular, the memory access patterns are quite different.
- The row-sweep form will typically work better using a language like C or $\mathrm{C}++$ which access 2D arrays in row-major form.
- Since Fortran accesses 2D arrays column-by-column, it is usually best to use the column-sweep form when working in that language.

Operation counts

- To compute the computation rate in FLOP/S, we need to know the number of FLOPs carried out and the elapsed time.
- Divisions are usually the most expensive of the four basic operations, followed by multiplication. Addition and subtraction are equivalent in terms of time and faster than multiplication or division.
- We usually count all four of these operations, but only when they involve floating point numbers. We typically ignore integer operations (e.g. array subscript calculations).
- In the case of a matrix-vector product, the innermost loop body contains a multiplication and an addition:

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

- The inner and outer loop are done M and N times respectively, so there are a total of $2 M N$ FLOPs.

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

The textbook algorithm

Consider the problem of multiplying two matrices:

$$
C=A B=\left[\begin{array}{lllll}
5 & 2 & 3 & 3 & 0 \\
1 & 8 & 4 & 2 & 6 \\
2 & 3 & 7 & 9 & 2
\end{array}\right]\left[\begin{array}{lll}
3 & 8 & 2 \\
5 & 4 & 0 \\
1 & 3 & 6 \\
2 & 7 & 5 \\
4 & 0 & 2
\end{array}\right]
$$

The standard "textbook" algorithm to form the product C of the $M \times P$ matrix A and the $P \times N$ matrix B is based on the inner product.

The $c_{i j}$ entry in the product is the inner product (or dot product) of the $i^{\text {th }}$ row of A and the $j^{\text {th }}$ column of B.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
    end
end
```

- known as the $i j k$-form of the product due to the loop ordering

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
        end
end
```

- known as the $i j k$-form of the product due to the loop ordering
- What is the operation count. . .?

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
    end
end
```

- known as the $i j k$-form of the product due to the loop ordering
- What is the operation count...?
- Number of FLOPs is $2 M N P$.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
    end
end
```

- known as the $i j k$-form of the product due to the loop ordering
- What is the operation count. . .?
- Number of FLOPs is $2 M N P$.
- For square matrices $M=N=P=n$ so number of FLOPs is $2 n^{3}$.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for \(i=1\) to \(M\)
    for \(j=1\) to \(N\)
        \(c(i, j)=0\)
        for \(k=1\) to \(P\)
        \(c(i, j)=c(i, j)+a(i, k) * b(k, j)\)
            end
    end
end
```

- A is accessed row-by-row but B is accessed column-by-column.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
    end
end
```

- A is accessed row-by-row but B is accessed column-by-column.
- The column index i for C varies faster than the row index j, but both of these are constant with respect to the inner loop. Compilers can easily optimize this.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b (k,j)
        end
    end
end
```

- A is accessed row-by-row but B is accessed column-by-column.
- The column index i for C varies faster than the row index j, but both of these are constant with respect to the inner loop. Compilers can easily optimize this.
- Regardless of the language we use (C or Fortran), we have an efficient access pattern for one matrix but not for the other.

The textbook algorithm

ijk-form Matrix-matrix product pseudocode:

```
for i = 1 to M
    for j = 1 to N
        c(i,j) = 0
        for k = 1 to P
        c(i,j) = c(i,j) + a(i,k) * b(k,j)
        end
    end
```

end

- A is accessed row-by-row but B is accessed column-by-column.
- The column index i for C varies faster than the row index j, but both of these are constant with respect to the inner loop. Compilers can easily optimize this.
- Regardless of the language we use (C or Fortran), we have an efficient access pattern for one matrix but not for the other.
- Can we improve things by rearranging the order of operations?

Outline

(1) Matrix operations

- Importance
- Dense and sparse matrices
- Matrices and arrays
(2) Matrix-vector multiplication
- Row-sweep algorithm
- Column-sweep algorithm
(3) Matrix-matrix multiplication
- "Standard" algorithm
- ijk-forms

The ijk forms

From linear algebra we know that column i of the matrix-matrix product $A B$ is defined as "a linear combination of the columns of A using the values in the $i^{\text {th }}$ column of B as weights." The pseudocode for this is:

```
for \(j=1\) to \(N\)
    for \(i=1\) to \(M\)
        \(c(i, j)=0.0\)
    end
    for \(k=1\) to \(P\)
        for \(i=1\) to \(M\)
        \(c(i, j)=c(i, j)+a(i, k) * b(k, j)\)
        end
        end
end
```

- the loop ordering changes but the innermost statement is unchanged
- the initialization of values in C is done one column at a time
- the operation count is still $2 M N P$. This is the $j k i$ form.

The ijk forms

Other loop orderings are possible...

The ijk forms

Other loop orderings are possible...
How many ways can i, j, and k be arranged?

The ijk forms

Other loop orderings are possible...
How many ways can i, j, and k be arranged?

- Recall from discrete math that this is a permutation problem.
- "three ways to choose the first letter, two ways to choose the second, and one way to choose the third": $3 \times 2 \times 1=6$
- There are six possible loop orderings.
- We'll work with all six during our first hands-on exercise © $^{\text {. }}$

