
CS311 Lecture: Basic Von Neumann Architecture;  Introduction to the MIPS 
Architecture and Assembly Language

Last revised 9/2/2009

Objectives:

1. To introduce the MIPS architectur
2. To introduce MIPS R-Type, immediate, and load-store instructions

 Materials: 

1. MIPS ISA Handout (will have been distributed before class)
2. Connection to MIPS to demo gcc

I. Introduction 

A. For the next few weeks, we will be studying the Machine Language level 
of system description.  At this level, a computer system can be iewed as a 
memory, a set of registers, and a set of instructions for manipulating the 
information in the memory and registers.

1. Programs written at a higher level of system description (e.g. in a 
language such as C) are translated into primitive operations at this level.

2. This level is, in turn, implemented directly by hardware - i.e. the 
registers are arrays of flip-flops, addition is performed by full adders, 
etc.

3. The architectural description of a machine at this level is often refered 
to an Instruction Set Architecture (ISA).

B. For this portion of the course, we will be focussing on a particular 
instruction set architecture (ISA) known  as MIPS.

1. It is not the goal of these lectures that you should become proficient 
MIPS assembly or machine language programmers.

2. Rather, we want to use MIPS as an example of a typical instruction set 
architecture.

a) The MIPS architecture belongs to the general category of Reduced 
Instruction Set Computer (RISC) architectures.  
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(1) As such, it is easier to learn than a Complex Instruction Set 
Computer (CISC) architecture such as the IA32 architecture 
used by the Pentium. 

(2) All brand new instruction set architectures defined since  1985 
have been RISC.  (The first RISC architectures were defined in 
the early 1980's.)

(a) e.g. Intel's 64-bit architecture (IA64) that was slated to 
replace the current IA32 architecture is a RISC architecture.  
(The reasons for this have to do with RISC architectures 
facilitating producing higher-performance  systems - a subject 
we will discuss later).

(b) However, Intel decided to extend the current IA32 (Pentium) 
architecture to 64 bits instead, for reasons of backward 
compatibility

(3) The current practice is to implement CISC architectures on top 
of a RISC core (there is a RISC inside the CISC) - for example, 
this is how newer Pentiums are actually being implemented.

b) When we get to the actual details of implementing a CPU 
(computer organization), the implementation of a RISC architecture 
like MIPS is more comprehensible - and, indeed, we will discuss the 
implementation of the MIPS architecture in later lectures.

3. It is also the case that once you have become familiar with one 
instruction set architecture, it is much easier to learn another.  (Once 
you learn to drive a Ford, driving a Chevy is easy.)

C. A bit of history

1. The MIPS architecture grows out of an early 1980's research project at 
Stanford University.  

2. In 1984, MIPS computer corporation was founded to commercialize 
this research.  However, CPU chips based on the MIPS architecture 
have been produced by a number of different companies, including LSI 
Logic, Toshiba, Philips, NEC, IDT, and NKK.

3. The MIPS architecture has passed through a series of evolutions, 
known as MIPS I, MIPS II, MIPS III, and MIPS IV.
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a) Each successive ISA is a superset of the preceeding one - so  
anything found in MIPS I is also found in MIPS II, III, and IV, etc.

b) The MIPS I and II ISA's were 32 bit architectures.  MIPS III added 
64 bit capabilities - but with the core 32 bit architecture as a subset.

c) We will confine our coverage to the core MIPS I architecture.

4. Note that the MIPS architecture itself is older than you are! That may 
seem surprising, given the rapid progress in the field of  CPU 
performance.  However, the changes have mostly come at the 
implementation level, not the architectural level.

(Compare: Today's cars are much safer, longer lasting, and  
environmentally friendly than those of decades ago - however, the 
basic architecture of gasoline engine, four wheels, a steering wheel,  
gas, brake and (optionally) clutch pedals has remained unchanged for  
decades.)

D. Note that we are going to study the MIPS ARCHITECTURE.  As is true 
of most successful architectures, There have been many  this architecture - 
e.g.  

1. R2000 - the original implementation, and the one whose 
implementation we will discuss later in the course

2. R3000, R3051

3. MIPS R6000 (implemented MIPS II ISA) *

4. MIPS R4000, Vr4300, R4400, R4600 (implemented MIPS III ISA)

* The R6000 preceeded the R4000 because the R4000 took longer 
than planned to develop, but was quickly superseded by the R4000

5. MIPS R5000 (implemented MIPS IV ISA)

6. MIPS R10000

7. Various specialized implementations used in embedded systems 
(printers, routers, game consoles)

E. Note: the system we will use in lab uses the R5000 implementation.
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II. Basic MIPS-I Architecture

A. Although MIPS implementations differ in internal organization, they can 
all be regarded as having the same basic architecture.

(Go over diagram in handout.  Note: IO Devices will be discussed later in 
the course and vary widely from installation to installation.)

B. Discuss handout material on CPU registers

1. The CPU has 35 user-visible REGISTERS (plus several typically used 
only by the operating system).  Each register holds one word (32 bits).

2. Registers can be thought of as a very special kind of memory cell.

a) Registers are part of the CPU, mot the memory system.

b) A register is referred to by name (e.g. $31, pc) instead of by 
address.

c) Information in a register can be accessed in much less than one 
clock cycle (e.g. much less than a nanoseconds on a 1GHz + 
machines). In contrast, information in memory requires 10's of ns to 
access.

3. Discuss

a) 32 general registers

b) pc

c) hi and lo

d) Note that - in contrast to the VonNeumann machine,  there is no IR.  
That's because MIPS uses a pipelined implementation in which 
several instructions are at different stages of processing  at any one 
time.  There are several "IR's" that are part of the pipeline registers, 
as we shall see later.

C. Discuss Handout material on Memory

1. The amount of physical memory installed will vary from system to  
system  Special hardware and software gives the user the appearance 
of a  much larger VIRTUAL MEMORY by using disk as an extension 
of main  memory to hold regions not currently being used.
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2. Addresses whose leftmost bit is 1 (0x80000000 to 0xffffffff) are 
handled in special ways by the memory management hardware, and so 
are not used by ordinary user programs (though they are used by the  
operating system). 

3. Individual regions of memory may be PROTECTED, so that a user 
program may be prohibited from writing it or reading or writing it.  
(This allows the system to protect multiple users of the same system 
from one another, and to protect itself from them.)
 (Memory management and protection are topics we will consider 
toward the end of the course.  They are only an issue when writing 
user programs if one accidentally or intentionally uses an invalid 
address.  The familiar "segmentation fault - core dumped" that you 
may have gotten due to pointer error in a C++ program is the 
operating system's typical response to attempted access to illegal 
memory addresses.)\

4. Thus, regardless of the mount of physical memory actually installed, 
the application program view of memory is 2 Gigabytes, with 
addresses  ranging from 00000000 to 0x7fffffff (on a 32-bit version of 
MIPS). 

III. Basic MIPS R-Type Instructions

A. The Basic Execution Cycle

1. The CPU fetches and executes instructions from memory. 

a) Each instruction is one word (32 bits) long.

b) The leftmost six bits of each instruction are the OPCODE which 
specifies what operation is to be performed.  (Some instructions use 
additional bits elsewhere in the instruction to further specify the 
operation.)

c) The remainder of the instruction specifies the OPERANDS - what 
values the operation is to be performed upon.

d) The precise format of the rest of the instruction (what bits have 
what meaning) follows one of three patterns, depending on the  
opcode.  (We will briefly introduce two today.)

2.  Like all Von Neumann machines, the CPU repeatedly executes the 
following "fetch - execute" cycle:
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while not halted
{

fetch a word from the memory location specified by pc
update pc (pc <- pc + 4 since instructions are one word long)
decode instruction
execute instruction

}

3. MIPS instructions have one of three formats:

a) R-Type

b)  I-Type

c) J-Type

B. The add instruction

1. The MIPS add instruction can be used to add the contents of two 
SOURCE registers, placing the result in some DESTINATION register 
(which can be the same as one of the source registers, or different.)

2. It looks like this (all values given in decimal)

# of bits 6 5 5 5 5 6 

 field name op rs rt rd shamt funct

 contents      op = 0 1st 2nd dest (not arith/logical
for source source reg used - function =
most R reg reg          0) 32 for add
type
instructions

This general format of instruction is called R format (where R stands for 
"register", because all operands are in registers)
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3. Thus, the instruction to add the contents of register 8 and register 9. 
placing the results in register 10, would look like this:

bits 31..26 25..21 20..16 15..11 10..6 5..0
(6) (5) (5) (5) (5) (6)

field
values
(decimal) 0 8 9 10 0 32
(binary) 000000 01000 01001 01010 00000 1000000

= 0000 0001 0000 1001 0101 0000 0010 0000
hexadecimal    =  0x01095020

4. Clearly, writing instructions in machine language is an error-prone and 
tedious process.  For this reason, we normally use assembly language as a 
symbolic representation, relying on a program (the assembler) to translate 
into machine language for us.

Ex: The above instruction in assembly language

add $10, $8, $9 - corresponds to HLL $10 = $8 + $9

Three things to note:

a) The symbolic op code (add) represents values both in the op and the 
function fields

b) Order of specifying registers

(1) Machine language: source1, source2, destination

(2) Assembly language: destination, source1, source2

(corresponds to the way we would write a HLL assignment  
statement: destination = source1 + source2.  The order of writing is 
not an issue, since we use a program to translate the symbolic form 
to machine language.)

(3) The shamt field that is not used by add (and many other   
instructions) is not specified at all in the assembly language form.
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C. Other R-Type instructions

1. Go over list in handout.

a) Discuss distinction between add/sub and addu/subu

b) Note two kinds of shift instructions (fixed amount and variable amount)

c) Note two kinds of right shift instruction (arithmetic, logical)

d) We will see user for slt, sltu later.

2. You might think that MIPS would have multiply and divide instructions 
that look similar to add and subtract - but this is not the case.

a) Multiply and divide are much more complex operations.  An add or 
subtract can be done in one machine cycle, but a multiply or divide will 
take many cycles. 

b) For this reason, early RISC architectures did not include multiply and 
divide instructions - they had to be synthesized by a software 
subroutine when needed.

c) MIPS does have hardware multiply and divide instructions, but they 
differ from most other R-type instructions in two ways

(1) They do not specify a destination register - the result of 
multiplication is placed as a double-length value in hi and lo; and 
division produces two results - quotient in lo, remainder in hi.

(2) These instructions START the execution of the operation,  which is 
performed by the multiply divide unit in parallel with further 
ordinary computation.

The result is fetched from hi and lo by mfhi, mflo - which are 
interlocked - i.e. further execution of instructions by the CPU is 
suspended until the needed value is available.
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IV. Working with Constants

A. The add immediate instruction.

1. Many times, it is necessary to work with integer constants in a program - 
e.g. C/C++/Java  i ++  translates into "add 1 to i"

2. One way to handle this would be to store the value 1 in a known location 
in memory, and then treat it like a memory variable when  its value is 
needed.

3. However, because constants are needed so often, MIPS provides a special 
form of the add instruction for dealing with them, called add immediate.  
These instructions are called I-Format instructions, because the instruction 
contains an IMMEDIATE VALUE as part of the instruction.

# of bits 6 5 5 16
field name op rs rt immediate value
contents       op = source destination value to add

8 for addi reg reg (two's 
complement
signed number)

4. Example: to add 1 to register 8, and put the result in register 9, we could 
use the following instruction 

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values 
(decimal) 8 8 9 1
(binary) 001000 01000 01001 0000000000000001

= 0010 0001 0000 1001 0000 0000 0000 0001 
 hexadecimal    =  0x21090001

5. The assembly-language way of writing the above would be

addi   $9, $8, 1

(By now you're used to the fact that the MIPS machine language has the 
order source then destination, while the assembly language puts the 
destination first!)
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6. Actually, the addi instruction can be used for much more than just adding 
a value to a register.

a) Suppose we wanted to SUBTRACT 1 - e.g. to do something like

i --

We can do this with addi, using a negative value.  (Assume i is in 
register 8):

addi $8, $8, -1

b) Suppose we wanted to LOAD 1 into a register - e.g. to do something 
like:

i = 1;

We can do this with addi, taking advantage of the fact that  register 0 
always contains 0.  (Assume i is in register 8)

addi $8, $0, 1

c) Other architectures might include several different instructions - e.g. 
add immediate, subtract immediate, and load immediate.  In keeping 
with the RISC philosophy, MIPS has just one that can be used to 
perform multiple jobs.

B. Other Immediate instructions - Handout.  Note that some treat the 16 bit 
constant as a signed number (and therefore sign extend to 32 bits) while 
others treat it as unsigned (and therefore append 16 leading 0's)

C. The load upper immediate Instruction

1. The I-Format instructions allocate 16 bits in the instruction to hold the 
immediate value to be used.  For those instructions which sign  extend the 
immediate value, we can represent any value between -32768  and + 
32767; for those which don't sign extend, any value between 0 and + 
65535.

2. What do we do if we need a value outside this range?  The MIPS 
architecture includes a "load upper immediate" instruction (lui), that can be 
used to place a 16 bit value into the UPPER half of a 32 bit register.  
When followed by an ordinary immediate instruction (typically ori to avoid 
sign extension), this can be used to put any 32 bit value in a register.
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# of bits 6 5 5 16 
field name op 0 rt immediate value
contents op = (not destination value to load

15 for lui used) reg into upper 16
bits

3. Example:
C:     x = 0x12345678
MIPS: lui     $2,0x1234

ori     $2,$2,0x5678
sw      $2,x

V. MIPS Load and Store Instructions

A. An important architectural characteristic of RISCs is that all computational 
instructions operate on values contained in registers, and put their result in a 
register.

1. If we want to do computation on variables contained in memory, we need 
to first load them into registers, do the computation there,  and then (if 
necessary) store the result back into memory. (NOTE: in many ISA's, the 
term LOAD is used to mean "copy a value from  a location in memory 
into a register", and STORE is used to mean  "copy a value from a 
register into a location in memory" - but these  terms are not used with 
100% consistency!  We will always use them in this way, though.

Ex: Assume that the variables x, y, and z are stored in memory, and we 
want to compute
x = y + z

a) Would be translated by four MIPS instructions

Load y into some register (say $8) 
Load z into some other register (say $9)
Add the  registers, putting the result into some register (say re-use $8)
Store the result register into x

b) In assembly language

lw $8, --- address of y
lw $9, --- address of z
add $8, $8, $9
sw $8, --- address of x

11



2. There are major two reasons why RISCs use this approach (known as load 
store architecture).

a) It facilitates using a speed-improving technique known as PIPELINING 
(to be discussed in detail later.)

b) It allows an arithmetic instruction to be represented in a single  word - 
note that it takes only 5 bits to specify a register, but could take as 
many as 32 to specify a memory address (so if we  could do x = y + z 
in one instruction, the instruction could need 96 bits just to specify the 
addresses of the three operands, plus more for the opcode! - which 
would amount to the same total length as four one-word instructions)

3. Obviously, when a value is stored in a register it is much easier to 
manipulate than when it is stored in memory.  For this reason, good 
compilers (and smart human programmers) try to take advantage  of the 
large number of available registers to store frequently-used variables in 
registers, rather than memory.

a) For example, if a function contains a few local variables, these will most 
likely be kept in registers, and will never exist in memory - since they 
come into existence when the function is entered, and cease to exist 
when it terminates.

b) The C language includes a register directive which can be used, when 
declaring a variable, to tell the compiler that the variable should "live" 
in a register if at all possible.
Example:
register int i;
The compiler will try to set aside a register to hold the value of i, and 
will not put it in memory (unless it is unable to reserve a register.)

c) However, good compilers incorporate register allocation algorithms 
that accomplish the same result - but often more efficiently than 
humans can do with register "hints" - so most programmers leave it to 
the compiler to handle this issue.

d) Nonetheless, in any program having more than a very small number of 
variables, there will be a need to keep many variables in memory.

12



B. This leads us to a consideration of the basic load and store instructions.

1. As indicated in the example above, each load or store must specify the  
operation to be performed, a register to be loaded or stored, and a 
memory address.

2. An astute observer will note that this appears to need more than the 32 
bits available in an instruction word: some number of bits to specify the 
operation, 5 to specify the register, and 32 to  specify the memory 
address!

3. To avoid this problem, MIPS uses a format for these instructions that 
specifies the address in terms of a BASE REGISTER and a 16 bit 
OFFSET.  The address is computed by adding the base register and the 
offset together.  The instruction format used is I-Format, similar to that of 
the immediate instructions we looked at earlier.
# of bits 6 5 5 16 
field name op rs rt immediate value
contents op = source transfer offset

35 for lw (base) (to load) (16 bit two's
43 for sw reg reg complement

signed number)

4. Example: to load the contents of memory location 100 (decimal) into 
register 8, we could use the following instruction - taking advantage of the 
fact that $0 always contains zero:
bits 31..26 25..21 20..16 15..0

(6) (5) (5) (16)
field
values 
(decimal) 35 0 8 100
(binary) 100011 00000 01000 0000000001100100

 = 1000 1100 0000 1000 0000 0000 0110 0010
hexadecimal    =  0x8c080062

5. The assembly-language way of writing the above would be
lw     $8, 100($0)

(Note, once again, that the order of the two register operands is the 
opposite of the machine-language order.  The load and  store instructions 
always specify the transfer register first, then the offset and base register.  
As usual, the assembler takes care of the order issue for us.)
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6. It might seem that the limitation to using a 16 bit offset would "cramp our 
style" in terms of accessing memory - i.e. a 16 bit offset can assume values 
in the range -32768 .. + 32767 if we regard the offset as a signed number.

a) If the address we wish to access is in low memory (up to 32767),  we 
can specify it directly, using $0 as the base register.

b) It is common for programs to group variables into regions of memory, 
and to use a register to point to the beginning o that region.

(1) The fields of an object are allocated storage in successive locations 
of memory, and the "this" pointer of methods is set to point to the 
first such location.
Example: Suppose we have a declared as follows:
class SomeClass
{

int x, y, z;

void foo()
{
    x = y + z;
}
...

When foo() is executing, the following situation might exist in 
memory:
---------
| x     | <--- this is address of start of
---------      this area
| y     |
---------
| z     |
---------
Assuming that the value of this is placed in register 2, the code for 
the assignment statement in foo might translate as follows (actual 
code generated by g++ on our MIPS machine)
lw      $3, 4($2)
lw      $4, 8($2)
add     $3, $3, $4
sw      $3, 0($2)
(Since ints are stored as words (4 bytes long), y is at an offset of 4 
relative to this, and z is at an offset of 8.)
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(2) Wherever possible, local variables of a function are kept in registers, 
rather than memory.  However, if variables need to be in memory, 
most compilers put the local variables of a  function into a single 
region of memory called the "stack frame"  of the function, and set 
register 29 (known by the special name  $fp) to point to it.
Example: a function might declare local variables as follows:
int a, b;
Assume, for the sake of discussion, that these need to be kept in 
memory.  Then the compiler might generate code that would create 
the following environment when the function is called:
---------
| a     | <--- $fp holds address of beginning of
---------      this area
| b     |
---------
Then we might load b into register 8 by the following code:
lw $8, 4($fp)
(Since ints are one word (4 bytes) long, b is at an offset  of 4 from 
the beginning of the frame area.)
(Note: actual compilers store additional information in the frame, so 
if you looked at actual compiled code the  offset would be more 
than 4, reflecting this.

(3) Many compilers put global variables into a single region of  
memory, and set register 28 (known by the special name $gp) to  
refer to point to it.  This allows global variables to be referenced by 
loads of the form:
lw register, some-offset($gp)
Note: The gnu compilers we have on our mips machine doesn't 
actually do this.

c) If all else fails, it is always possible to access a variable in memory by 
putting its address into a register, and then using an address of the 
form
 0(the register)
The assember is capable of generating code to accomplish this, and 
uses a specific register that is set aside by software  convention for this: 
register 1 - known by the special name  at (assembler temporary.)
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C.  In addition to accessing scalar variables, it is also possible to use load/store to 
access elements of an array.  In this case, two approaches are possible:

1. If the element number is a constant, we can put the address of the array in 
a register and encode the element number in the offset.

Example: Given an array of integers x, load x[4] into register 9, assuming 
that register 8 holds the address of the array (the address of x[0])

ASK

 lw $9, 16($8)  # 16 because each element is 4 bytes long

2. If the element number is a variable, we can compute the address of the 
desired element in a register and then use it with offset 0.

Example: Given an array of integers x, load x[i] into register 9,  assuming 
that register 8 holds the address of the array, and register 10 holds the 
value of i.  Use register 2 as a temporary.

ASK

add    $2, $10, $10    # $2 = 2 * i
add    $2, $2, $2      # $2 = 4 * i
add    $2, $2, $9      # $2 = address of x[i]
lw     $9, 0($2)

3. Note that in C/C++ and Java it is possible to use very similar statements to 
allocate storage for an array:

 C/C++   int * x = new int [10];
Java    int [] x = new int [10];

In both languages, x now is a variable that holds the ADDRESS of the 
first element of the array (x[0]), and access to an array element x[i] is 
obtained by adding the value of x and the value of i (times the size of an 
element). This is the way that the underlying hardware accesses arrays.
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VI. MIPS Conditional Branch Instructions

A. The original version of the MIPS ISA defined two conditional branch 
instructions, which change the value in the program counter (and thus alter 
the flow of the program) if some condition is true.  (Later versions of the ISA 
defined additional such instructions, but we will limit  ourselves to these two 
now).

1. beq - branch if the two registers are equal

2. bne - branch if the two registers are not equal

B. Both conditional branches are I format instructions, and look like this

# of bits 6 5 5 16  
field name op rs rt immediate value
contents op = first second offset

4 for beq reg to reg to (two's complement
5 for bne compare compare signed number)

C. Both conditional branches specify the destination of the branch as an offset 
relative to the value currently in the PC. 

1. The offset is multiplied by 4 (because all instruction addresses are a 
multiple of 4) and then added to the value currently in he pc, which is by 
this time the address of the NEXT instruction to be executed.

2. The offset can range from -32678 to +32767.  After multiplication by 4, 
and adding to the address of the next instruction, this means that 
conditional branches can "reach" to an instruction in the range

addr of branch instruction - 131068 .. addr of branch instruction + 131072

D. An important quirk: RISC computers (including MIPS) achieve impressive 
performance in part by overlapping the execution of several  nstructions.

1. We will see, when we get to the implementation of MIPS, that the ISA 
was designed to allow the CPU to actually be working on different  parts 
of up to 5 successive instructions at the same time.

2. This poses an interesting problem in the case of conditional  branches: by 
the time that a decision has been made about whether or not to branch, 
the next instruction has already been fetched from memory.
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a) This doesn't pose a problem if the branch is not taken (the  condition is 
false).  But what if the condition is true?  In this case, we have fetched 
an instruction from memory that we don't want to execute.

b) We could just nullify the instruction - causing a "bubble" in the pipeline.  
However, what many RISCs - including MIPS - do is to execute the 
instruction anyway.  Often, it is possible to fill this "branch slot" with a 
useful instruction that needs to be done regardless of whether or not 
we branched; but - absent this - it is standard practice to fill this slot 
with a "nop" (no-operation) instruction.

E. An example:

C/C++: if (x == y)
    x ++;

MIPS Assembly language - assume that x is in $4 and y in $5:

bne $4, $5, notequal
nop
addiu $4, $4, 1 

Encoding of the branch instruction - what must the offset value be?

ASK

2 - address of nop + 2 = instruction following addiu

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 5 4 5 2
(binary) 000101 00100 00101 0000000000000010

= 0001 0100 1000 0101 0000 0000 0000 0010 
hexadecimal    =  0x14850002
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VII. The Assembler

A. From the examples above, it should be clear that writing MIPS programs in 
machine language would be tedious and error prone, and that such programs 
could be very hard to modify.  This is true of any machine language.  Thus, 
from the earliest days of computing (the 1950's), when it is necessary to 
program at this level it has been common to write programs in a symbolic 
ASSEMBLY LANGUAGE and then use a special program called an 
ASSEMBLER to translate the symbolic program into actual binary machine 
code.

B. Today, of course, it is relatively uncommon to write programs in assembly 
language - though assembly language must still be used for writing some low-
level components of system software such as operating systems.  Today, most 
assembly language is actually written by compilers - many compilers translate 
a HLL into assembly language, which then translates it into machine language 
- though some compilers compile directly to machine language.

1. Example: The C and C++ compilers on most Unix systems work this way.

E.g. if we compile a C++ program called foo.cc into an object program 
foo.o using the command|

g++ -c foo.cc 

We actually get an intermediate file called foo.s which is then translated to 
get foo.o

2. Normally, the assembly code is deleted after it is assembled. However, you 
can use the -S command line switch to stop the process after the assembly 
code is produced.

DEMO:

Create the following simple program demo.cc:

int x, y, z;

void foo()
{
    x = y + z;
}

Compile using gcc -S demo.cc
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Show demo.s.

Note that there is a _lot_ of overhead code associated with entering and 
exiting a function.

Note several lines that are immediately recognizable:

lw      $2,y
lw      $3,z
addu    $2,$2,$3
sw 

(Note: the addu instruction is very similar to the add instruction we have 
considered, except that it does not do any checking for overflow.  We will 
consider how MIPS add handles overflow later; note that C programs 
simply ignore overflow!)

C. Historically, there has been a one-to-one correspondence between lines of 
assembly language code and machine instructions - e.g. the symbolic 
operation code corresponds directly to a machine language op code, and each 
line of assembly language produces exactly one machine  instruction. 

1. However, on RISCs this is not necessarily true - many RISC assemblers  
will accept some constructs that assemble into more than one machine  
instruction, and will synthesize certain RISC instructions from assembly 
language instructions that do not correspond directly to a machine 
instruction.

2. Example: in the above - the various load and store instructions may 
require more than one machine instruction. 

Ex: lw $2,y

If y's address is <= 32767, this can be encoded in a single I ormat lw 
instruction. However, if y's address is >= 32768, it may be necessary to 
synthesize a sequence of instructions that put the address of y into some 
temporary register (at), and then the instruction lw $2, 0(at).  Thus, this 
one line could translate into as many  as three machine language 
instructions.

3. Example: The MIPS assemblers recognize certain pseudo-instructions that 
can be synthesized from other actual machine instructions.

a) Example: Suppose we want to copy the value in $2 into $3.  How can 
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we do this using MIPS instructions we already know?

ASK

add $3, $2, $0

The MIPS assembler will accept the pseudo instruction:

move $3, $2 

which does not directly correspond to any MIPS machine instruction, 
and will synthesize an instruction like the above when it occurs.

b) Example: Suppose we want to load a constant (say 42 = 2a hex) into 
register 2.  How can we do this using instructions we know?

ASK

ori $2, $0, 42

The MIPS assembler will accept the pseudo instruction:

li $2, 42

which does not directly correspond to any MIPS machine instruction, 
and will synthesize an instruction like the above when it occurs.

4. The pipelined implementation of MIPS requires that we cannot use a value 
loaded from memory on the very next instruction.  (This has to do with 
the fact that execution of successive instructions is  overlapped in time.)  
Sometimes the assembler needs to insert a "do  nothing" instruction to 
ensure that values are valid.  (We will  discuss this later in the course, and 
will ignore it for now.)

D. You will get some experience working with the MIPS assembler in lab.
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VIII. An Example

A. To put everything together, consider the compilation of the following C/C++ 
assignment:

int answer;
int x, y; 
int a[10];
int i;

answer = (x + a[i]) - (y + 1);

B. MIPS assembly language (ignoring load delays).  Assume, for  simplicity, that 
all variables are in a low address region of memory, so they can be accessed 
by a 16-bit address.  (A more realistic situation would involve 32-bit 
addresses, but that's not the point here.)

lw $8, i        # $8 = value of i
sll $8, $8, 2   # $8 = 4*i
lw $8, a($8)    # $8 = word at address of a + 4 * i = a[i]
lw $9, x        # $9 = x
add $8, $9, $8  # $8 = x + a[i]
lw $9, y        # $9 = value of y
addi $9, $9, 1  # $9 = y + 1
sub $8, $8, $9  # $8 = (x + a[i]) - (y + 1)
sw $8, answer

C. MIPS machine language.  Assume, for simplicity, that answer is at 100, x at 
104, y at 108, a at 112, and i at 152 - all decimal.

ASK class to develop

lw $8, i        # $8 = value of i

35 0 8 152 (values in decimal)
100011 00000 01000 0000000010011000 (values in binary)
1000  1100  0000  1000  0000  0000 1001 1000 = 0x8c080098

sll $8, $8, 2   # $8 = 4*i

0 0 8 8 2 0
000000 00000 01000 01000 00010 000000
0000  0000  0000  1000  0100  0000  1000  0000 = 0x00084080
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lw $8, a($8)    # $8 = word at address of a + 4 * i = a[i]

35 8 8 112
100011 01000 01000 0000000001110000
1000  1101  0000  1000  0000  0000  0111  0000 = 0x8d080070

lw $9, x        # $9 = x

35 0 9 104 
100011 00000 01001 0000000001101000
1000  1100  0000  1001  0000  0000  0110  1000 = 0x8c090068

add $8, $9, $8  # $8 = x + a[i]

0 8 9 8 0 32
000000 01000 01001 01000 00000 100000
0000  0001  0000  1001  0100  0000  0010  0000 = 0x01094020

lw $9, y        # $9 = value of y

35 0 9 108
100011 00000 01001 0000000001101100
1000  1100  0000  1001  0000  0000  0110  1100 = 0x8c09006c

addi $9, $9, 1  # $9 = y + 1

8 9 9 1
001000 01001 01001 0000000000000001
0010  0001  0010  1001  0000  0000  0000  0001 = 0x21290001

sub $8, $8, $9  # $8 = (x + a[i]) - (y + 1)

0 8 9 8 0 34
000000 01000 01001 01000 00000 100010
0000  0001  0000  1001  0100  0000  0010  0010 = 0x01094022

sw $8, answer

43 0 8 100
101011 00000 01000 0000000001100100
1010  1100  0000  1000  0000  0000  0110  0100 = 0xac080064
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