
CS311 Lecture: Basic Von Neumann Architecture; Introduction to the MIPS
Architecture and Assembly Language

Last revised 9/2/2009

Objectives:

1. To introduce the MIPS architectur
2. To introduce MIPS R-Type, immediate, and load-store instructions

 Materials:

1. MIPS ISA Handout (will have been distributed before class)
2. Connection to MIPS to demo gcc

I. Introduction

A. For the next few weeks, we will be studying the Machine Language level
of system description. At this level, a computer system can be iewed as a
memory, a set of registers, and a set of instructions for manipulating the
information in the memory and registers.

1. Programs written at a higher level of system description (e.g. in a
language such as C) are translated into primitive operations at this level.

2. This level is, in turn, implemented directly by hardware - i.e. the
registers are arrays of flip-flops, addition is performed by full adders,
etc.

3. The architectural description of a machine at this level is often refered
to an Instruction Set Architecture (ISA).

B. For this portion of the course, we will be focussing on a particular
instruction set architecture (ISA) known as MIPS.

1. It is not the goal of these lectures that you should become proficient
MIPS assembly or machine language programmers.

2. Rather, we want to use MIPS as an example of a typical instruction set
architecture.

a) The MIPS architecture belongs to the general category of Reduced
Instruction Set Computer (RISC) architectures.

1

(1) As such, it is easier to learn than a Complex Instruction Set
Computer (CISC) architecture such as the IA32 architecture
used by the Pentium.

(2) All brand new instruction set architectures defined since 1985
have been RISC. (The first RISC architectures were defined in
the early 1980's.)

(a) e.g. Intel's 64-bit architecture (IA64) that was slated to
replace the current IA32 architecture is a RISC architecture.
(The reasons for this have to do with RISC architectures
facilitating producing higher-performance systems - a subject
we will discuss later).

(b) However, Intel decided to extend the current IA32 (Pentium)
architecture to 64 bits instead, for reasons of backward
compatibility

(3) The current practice is to implement CISC architectures on top
of a RISC core (there is a RISC inside the CISC) - for example,
this is how newer Pentiums are actually being implemented.

b) When we get to the actual details of implementing a CPU
(computer organization), the implementation of a RISC architecture
like MIPS is more comprehensible - and, indeed, we will discuss the
implementation of the MIPS architecture in later lectures.

3. It is also the case that once you have become familiar with one
instruction set architecture, it is much easier to learn another. (Once
you learn to drive a Ford, driving a Chevy is easy.)

C. A bit of history

1. The MIPS architecture grows out of an early 1980's research project at
Stanford University.

2. In 1984, MIPS computer corporation was founded to commercialize
this research. However, CPU chips based on the MIPS architecture
have been produced by a number of different companies, including LSI
Logic, Toshiba, Philips, NEC, IDT, and NKK.

3. The MIPS architecture has passed through a series of evolutions,
known as MIPS I, MIPS II, MIPS III, and MIPS IV.

2

a) Each successive ISA is a superset of the preceeding one - so
anything found in MIPS I is also found in MIPS II, III, and IV, etc.

b) The MIPS I and II ISA's were 32 bit architectures. MIPS III added
64 bit capabilities - but with the core 32 bit architecture as a subset.

c) We will confine our coverage to the core MIPS I architecture.

4. Note that the MIPS architecture itself is older than you are! That may
seem surprising, given the rapid progress in the field of CPU
performance. However, the changes have mostly come at the
implementation level, not the architectural level.

(Compare: Today's cars are much safer, longer lasting, and
environmentally friendly than those of decades ago - however, the
basic architecture of gasoline engine, four wheels, a steering wheel,
gas, brake and (optionally) clutch pedals has remained unchanged for
decades.)

D. Note that we are going to study the MIPS ARCHITECTURE. As is true
of most successful architectures, There have been many this architecture -
e.g.

1. R2000 - the original implementation, and the one whose
implementation we will discuss later in the course

2. R3000, R3051

3. MIPS R6000 (implemented MIPS II ISA) *

4. MIPS R4000, Vr4300, R4400, R4600 (implemented MIPS III ISA)

* The R6000 preceeded the R4000 because the R4000 took longer
than planned to develop, but was quickly superseded by the R4000

5. MIPS R5000 (implemented MIPS IV ISA)

6. MIPS R10000

7. Various specialized implementations used in embedded systems
(printers, routers, game consoles)

E. Note: the system we will use in lab uses the R5000 implementation.

3

II. Basic MIPS-I Architecture

A. Although MIPS implementations differ in internal organization, they can
all be regarded as having the same basic architecture.

(Go over diagram in handout. Note: IO Devices will be discussed later in
the course and vary widely from installation to installation.)

B. Discuss handout material on CPU registers

1. The CPU has 35 user-visible REGISTERS (plus several typically used
only by the operating system). Each register holds one word (32 bits).

2. Registers can be thought of as a very special kind of memory cell.

a) Registers are part of the CPU, mot the memory system.

b) A register is referred to by name (e.g. $31, pc) instead of by
address.

c) Information in a register can be accessed in much less than one
clock cycle (e.g. much less than a nanoseconds on a 1GHz +
machines). In contrast, information in memory requires 10's of ns to
access.

3. Discuss

a) 32 general registers

b) pc

c) hi and lo

d) Note that - in contrast to the VonNeumann machine, there is no IR.
That's because MIPS uses a pipelined implementation in which
several instructions are at different stages of processing at any one
time. There are several "IR's" that are part of the pipeline registers,
as we shall see later.

C. Discuss Handout material on Memory

1. The amount of physical memory installed will vary from system to
system Special hardware and software gives the user the appearance
of a much larger VIRTUAL MEMORY by using disk as an extension
of main memory to hold regions not currently being used.

4

2. Addresses whose leftmost bit is 1 (0x80000000 to 0xffffffff) are
handled in special ways by the memory management hardware, and so
are not used by ordinary user programs (though they are used by the
operating system).

3. Individual regions of memory may be PROTECTED, so that a user
program may be prohibited from writing it or reading or writing it.
(This allows the system to protect multiple users of the same system
from one another, and to protect itself from them.)
 (Memory management and protection are topics we will consider
toward the end of the course. They are only an issue when writing
user programs if one accidentally or intentionally uses an invalid
address. The familiar "segmentation fault - core dumped" that you
may have gotten due to pointer error in a C++ program is the
operating system's typical response to attempted access to illegal
memory addresses.)\

4. Thus, regardless of the mount of physical memory actually installed,
the application program view of memory is 2 Gigabytes, with
addresses ranging from 00000000 to 0x7fffffff (on a 32-bit version of
MIPS).

III. Basic MIPS R-Type Instructions

A. The Basic Execution Cycle

1. The CPU fetches and executes instructions from memory.

a) Each instruction is one word (32 bits) long.

b) The leftmost six bits of each instruction are the OPCODE which
specifies what operation is to be performed. (Some instructions use
additional bits elsewhere in the instruction to further specify the
operation.)

c) The remainder of the instruction specifies the OPERANDS - what
values the operation is to be performed upon.

d) The precise format of the rest of the instruction (what bits have
what meaning) follows one of three patterns, depending on the
opcode. (We will briefly introduce two today.)

2. Like all Von Neumann machines, the CPU repeatedly executes the
following "fetch - execute" cycle:

5

while not halted
{

fetch a word from the memory location specified by pc
update pc (pc <- pc + 4 since instructions are one word long)
decode instruction
execute instruction

}

3. MIPS instructions have one of three formats:

a) R-Type

b) I-Type

c) J-Type

B. The add instruction

1. The MIPS add instruction can be used to add the contents of two
SOURCE registers, placing the result in some DESTINATION register
(which can be the same as one of the source registers, or different.)

2. It looks like this (all values given in decimal)

of bits 6 5 5 5 5 6

 field name op rs rt rd shamt funct

 contents op = 0 1st 2nd dest (not arith/logical
for source source reg used - function =
most R reg reg 0) 32 for add
type
instructions

This general format of instruction is called R format (where R stands for
"register", because all operands are in registers)

6

3. Thus, the instruction to add the contents of register 8 and register 9.
placing the results in register 10, would look like this:

bits 31..26 25..21 20..16 15..11 10..6 5..0
(6) (5) (5) (5) (5) (6)

field
values
(decimal) 0 8 9 10 0 32
(binary) 000000 01000 01001 01010 00000 1000000

= 0000 0001 0000 1001 0101 0000 0010 0000
hexadecimal = 0x01095020

4. Clearly, writing instructions in machine language is an error-prone and
tedious process. For this reason, we normally use assembly language as a
symbolic representation, relying on a program (the assembler) to translate
into machine language for us.

Ex: The above instruction in assembly language

add $10, $8, $9 - corresponds to HLL $10 = $8 + $9

Three things to note:

a) The symbolic op code (add) represents values both in the op and the
function fields

b) Order of specifying registers

(1) Machine language: source1, source2, destination

(2) Assembly language: destination, source1, source2

(corresponds to the way we would write a HLL assignment
statement: destination = source1 + source2. The order of writing is
not an issue, since we use a program to translate the symbolic form
to machine language.)

(3) The shamt field that is not used by add (and many other
instructions) is not specified at all in the assembly language form.

7

C. Other R-Type instructions

1. Go over list in handout.

a) Discuss distinction between add/sub and addu/subu

b) Note two kinds of shift instructions (fixed amount and variable amount)

c) Note two kinds of right shift instruction (arithmetic, logical)

d) We will see user for slt, sltu later.

2. You might think that MIPS would have multiply and divide instructions
that look similar to add and subtract - but this is not the case.

a) Multiply and divide are much more complex operations. An add or
subtract can be done in one machine cycle, but a multiply or divide will
take many cycles.

b) For this reason, early RISC architectures did not include multiply and
divide instructions - they had to be synthesized by a software
subroutine when needed.

c) MIPS does have hardware multiply and divide instructions, but they
differ from most other R-type instructions in two ways

(1) They do not specify a destination register - the result of
multiplication is placed as a double-length value in hi and lo; and
division produces two results - quotient in lo, remainder in hi.

(2) These instructions START the execution of the operation, which is
performed by the multiply divide unit in parallel with further
ordinary computation.

The result is fetched from hi and lo by mfhi, mflo - which are
interlocked - i.e. further execution of instructions by the CPU is
suspended until the needed value is available.

8

IV. Working with Constants

A. The add immediate instruction.

1. Many times, it is necessary to work with integer constants in a program -
e.g. C/C++/Java i ++ translates into "add 1 to i"

2. One way to handle this would be to store the value 1 in a known location
in memory, and then treat it like a memory variable when its value is
needed.

3. However, because constants are needed so often, MIPS provides a special
form of the add instruction for dealing with them, called add immediate.
These instructions are called I-Format instructions, because the instruction
contains an IMMEDIATE VALUE as part of the instruction.

of bits 6 5 5 16
field name op rs rt immediate value
contents op = source destination value to add

8 for addi reg reg (two's
complement
signed number)

4. Example: to add 1 to register 8, and put the result in register 9, we could
use the following instruction

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 8 8 9 1
(binary) 001000 01000 01001 0000000000000001

= 0010 0001 0000 1001 0000 0000 0000 0001
 hexadecimal = 0x21090001

5. The assembly-language way of writing the above would be

addi $9, $8, 1

(By now you're used to the fact that the MIPS machine language has the
order source then destination, while the assembly language puts the
destination first!)

9

6. Actually, the addi instruction can be used for much more than just adding
a value to a register.

a) Suppose we wanted to SUBTRACT 1 - e.g. to do something like

i --

We can do this with addi, using a negative value. (Assume i is in
register 8):

addi $8, $8, -1

b) Suppose we wanted to LOAD 1 into a register - e.g. to do something
like:

i = 1;

We can do this with addi, taking advantage of the fact that register 0
always contains 0. (Assume i is in register 8)

addi $8, $0, 1

c) Other architectures might include several different instructions - e.g.
add immediate, subtract immediate, and load immediate. In keeping
with the RISC philosophy, MIPS has just one that can be used to
perform multiple jobs.

B. Other Immediate instructions - Handout. Note that some treat the 16 bit
constant as a signed number (and therefore sign extend to 32 bits) while
others treat it as unsigned (and therefore append 16 leading 0's)

C. The load upper immediate Instruction

1. The I-Format instructions allocate 16 bits in the instruction to hold the
immediate value to be used. For those instructions which sign extend the
immediate value, we can represent any value between -32768 and +
32767; for those which don't sign extend, any value between 0 and +
65535.

2. What do we do if we need a value outside this range? The MIPS
architecture includes a "load upper immediate" instruction (lui), that can be
used to place a 16 bit value into the UPPER half of a 32 bit register.
When followed by an ordinary immediate instruction (typically ori to avoid
sign extension), this can be used to put any 32 bit value in a register.

10

of bits 6 5 5 16
field name op 0 rt immediate value
contents op = (not destination value to load

15 for lui used) reg into upper 16
bits

3. Example:
C: x = 0x12345678
MIPS: lui $2,0x1234

ori $2,$2,0x5678
sw $2,x

V. MIPS Load and Store Instructions

A. An important architectural characteristic of RISCs is that all computational
instructions operate on values contained in registers, and put their result in a
register.

1. If we want to do computation on variables contained in memory, we need
to first load them into registers, do the computation there, and then (if
necessary) store the result back into memory. (NOTE: in many ISA's, the
term LOAD is used to mean "copy a value from a location in memory
into a register", and STORE is used to mean "copy a value from a
register into a location in memory" - but these terms are not used with
100% consistency! We will always use them in this way, though.

Ex: Assume that the variables x, y, and z are stored in memory, and we
want to compute
x = y + z

a) Would be translated by four MIPS instructions

Load y into some register (say $8)
Load z into some other register (say $9)
Add the registers, putting the result into some register (say re-use $8)
Store the result register into x

b) In assembly language

lw $8, --- address of y
lw $9, --- address of z
add $8, $8, $9
sw $8, --- address of x

11

2. There are major two reasons why RISCs use this approach (known as load
store architecture).

a) It facilitates using a speed-improving technique known as PIPELINING
(to be discussed in detail later.)

b) It allows an arithmetic instruction to be represented in a single word -
note that it takes only 5 bits to specify a register, but could take as
many as 32 to specify a memory address (so if we could do x = y + z
in one instruction, the instruction could need 96 bits just to specify the
addresses of the three operands, plus more for the opcode! - which
would amount to the same total length as four one-word instructions)

3. Obviously, when a value is stored in a register it is much easier to
manipulate than when it is stored in memory. For this reason, good
compilers (and smart human programmers) try to take advantage of the
large number of available registers to store frequently-used variables in
registers, rather than memory.

a) For example, if a function contains a few local variables, these will most
likely be kept in registers, and will never exist in memory - since they
come into existence when the function is entered, and cease to exist
when it terminates.

b) The C language includes a register directive which can be used, when
declaring a variable, to tell the compiler that the variable should "live"
in a register if at all possible.
Example:
register int i;
The compiler will try to set aside a register to hold the value of i, and
will not put it in memory (unless it is unable to reserve a register.)

c) However, good compilers incorporate register allocation algorithms
that accomplish the same result - but often more efficiently than
humans can do with register "hints" - so most programmers leave it to
the compiler to handle this issue.

d) Nonetheless, in any program having more than a very small number of
variables, there will be a need to keep many variables in memory.

12

B. This leads us to a consideration of the basic load and store instructions.

1. As indicated in the example above, each load or store must specify the
operation to be performed, a register to be loaded or stored, and a
memory address.

2. An astute observer will note that this appears to need more than the 32
bits available in an instruction word: some number of bits to specify the
operation, 5 to specify the register, and 32 to specify the memory
address!

3. To avoid this problem, MIPS uses a format for these instructions that
specifies the address in terms of a BASE REGISTER and a 16 bit
OFFSET. The address is computed by adding the base register and the
offset together. The instruction format used is I-Format, similar to that of
the immediate instructions we looked at earlier.
of bits 6 5 5 16
field name op rs rt immediate value
contents op = source transfer offset

35 for lw (base) (to load) (16 bit two's
43 for sw reg reg complement

signed number)

4. Example: to load the contents of memory location 100 (decimal) into
register 8, we could use the following instruction - taking advantage of the
fact that $0 always contains zero:
bits 31..26 25..21 20..16 15..0

(6) (5) (5) (16)
field
values
(decimal) 35 0 8 100
(binary) 100011 00000 01000 0000000001100100

 = 1000 1100 0000 1000 0000 0000 0110 0010
hexadecimal = 0x8c080062

5. The assembly-language way of writing the above would be
lw $8, 100($0)

(Note, once again, that the order of the two register operands is the
opposite of the machine-language order. The load and store instructions
always specify the transfer register first, then the offset and base register.
As usual, the assembler takes care of the order issue for us.)

13

6. It might seem that the limitation to using a 16 bit offset would "cramp our
style" in terms of accessing memory - i.e. a 16 bit offset can assume values
in the range -32768 .. + 32767 if we regard the offset as a signed number.

a) If the address we wish to access is in low memory (up to 32767), we
can specify it directly, using $0 as the base register.

b) It is common for programs to group variables into regions of memory,
and to use a register to point to the beginning o that region.

(1) The fields of an object are allocated storage in successive locations
of memory, and the "this" pointer of methods is set to point to the
first such location.
Example: Suppose we have a declared as follows:
class SomeClass
{

int x, y, z;

void foo()
{
 x = y + z;
}
...

When foo() is executing, the following situation might exist in
memory:

| x | <--- this is address of start of
--------- this area
y
z

Assuming that the value of this is placed in register 2, the code for
the assignment statement in foo might translate as follows (actual
code generated by g++ on our MIPS machine)
lw $3, 4($2)
lw $4, 8($2)
add $3, $3, $4
sw $3, 0($2)
(Since ints are stored as words (4 bytes long), y is at an offset of 4
relative to this, and z is at an offset of 8.)

14

(2) Wherever possible, local variables of a function are kept in registers,
rather than memory. However, if variables need to be in memory,
most compilers put the local variables of a function into a single
region of memory called the "stack frame" of the function, and set
register 29 (known by the special name $fp) to point to it.
Example: a function might declare local variables as follows:
int a, b;
Assume, for the sake of discussion, that these need to be kept in
memory. Then the compiler might generate code that would create
the following environment when the function is called:

| a | <--- $fp holds address of beginning of
--------- this area
b
Then we might load b into register 8 by the following code:
lw $8, 4($fp)
(Since ints are one word (4 bytes) long, b is at an offset of 4 from
the beginning of the frame area.)
(Note: actual compilers store additional information in the frame, so
if you looked at actual compiled code the offset would be more
than 4, reflecting this.

(3) Many compilers put global variables into a single region of
memory, and set register 28 (known by the special name $gp) to
refer to point to it. This allows global variables to be referenced by
loads of the form:
lw register, some-offset($gp)
Note: The gnu compilers we have on our mips machine doesn't
actually do this.

c) If all else fails, it is always possible to access a variable in memory by
putting its address into a register, and then using an address of the
form
 0(the register)
The assember is capable of generating code to accomplish this, and
uses a specific register that is set aside by software convention for this:
register 1 - known by the special name at (assembler temporary.)

15

C. In addition to accessing scalar variables, it is also possible to use load/store to
access elements of an array. In this case, two approaches are possible:

1. If the element number is a constant, we can put the address of the array in
a register and encode the element number in the offset.

Example: Given an array of integers x, load x[4] into register 9, assuming
that register 8 holds the address of the array (the address of x[0])

ASK

 lw $9, 16($8) # 16 because each element is 4 bytes long

2. If the element number is a variable, we can compute the address of the
desired element in a register and then use it with offset 0.

Example: Given an array of integers x, load x[i] into register 9, assuming
that register 8 holds the address of the array, and register 10 holds the
value of i. Use register 2 as a temporary.

ASK

add $2, $10, $10 # $2 = 2 * i
add $2, $2, $2 # $2 = 4 * i
add $2, $2, $9 # $2 = address of x[i]
lw $9, 0($2)

3. Note that in C/C++ and Java it is possible to use very similar statements to
allocate storage for an array:

 C/C++ int * x = new int [10];
Java int [] x = new int [10];

In both languages, x now is a variable that holds the ADDRESS of the
first element of the array (x[0]), and access to an array element x[i] is
obtained by adding the value of x and the value of i (times the size of an
element). This is the way that the underlying hardware accesses arrays.

16

VI. MIPS Conditional Branch Instructions

A. The original version of the MIPS ISA defined two conditional branch
instructions, which change the value in the program counter (and thus alter
the flow of the program) if some condition is true. (Later versions of the ISA
defined additional such instructions, but we will limit ourselves to these two
now).

1. beq - branch if the two registers are equal

2. bne - branch if the two registers are not equal

B. Both conditional branches are I format instructions, and look like this

of bits 6 5 5 16
field name op rs rt immediate value
contents op = first second offset

4 for beq reg to reg to (two's complement
5 for bne compare compare signed number)

C. Both conditional branches specify the destination of the branch as an offset
relative to the value currently in the PC.

1. The offset is multiplied by 4 (because all instruction addresses are a
multiple of 4) and then added to the value currently in he pc, which is by
this time the address of the NEXT instruction to be executed.

2. The offset can range from -32678 to +32767. After multiplication by 4,
and adding to the address of the next instruction, this means that
conditional branches can "reach" to an instruction in the range

addr of branch instruction - 131068 .. addr of branch instruction + 131072

D. An important quirk: RISC computers (including MIPS) achieve impressive
performance in part by overlapping the execution of several nstructions.

1. We will see, when we get to the implementation of MIPS, that the ISA
was designed to allow the CPU to actually be working on different parts
of up to 5 successive instructions at the same time.

2. This poses an interesting problem in the case of conditional branches: by
the time that a decision has been made about whether or not to branch,
the next instruction has already been fetched from memory.

17

a) This doesn't pose a problem if the branch is not taken (the condition is
false). But what if the condition is true? In this case, we have fetched
an instruction from memory that we don't want to execute.

b) We could just nullify the instruction - causing a "bubble" in the pipeline.
However, what many RISCs - including MIPS - do is to execute the
instruction anyway. Often, it is possible to fill this "branch slot" with a
useful instruction that needs to be done regardless of whether or not
we branched; but - absent this - it is standard practice to fill this slot
with a "nop" (no-operation) instruction.

E. An example:

C/C++: if (x == y)
 x ++;

MIPS Assembly language - assume that x is in $4 and y in $5:

bne $4, $5, notequal
nop
addiu $4, $4, 1

Encoding of the branch instruction - what must the offset value be?

ASK

2 - address of nop + 2 = instruction following addiu

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 5 4 5 2
(binary) 000101 00100 00101 0000000000000010

= 0001 0100 1000 0101 0000 0000 0000 0010
hexadecimal = 0x14850002

18

VII. The Assembler

A. From the examples above, it should be clear that writing MIPS programs in
machine language would be tedious and error prone, and that such programs
could be very hard to modify. This is true of any machine language. Thus,
from the earliest days of computing (the 1950's), when it is necessary to
program at this level it has been common to write programs in a symbolic
ASSEMBLY LANGUAGE and then use a special program called an
ASSEMBLER to translate the symbolic program into actual binary machine
code.

B. Today, of course, it is relatively uncommon to write programs in assembly
language - though assembly language must still be used for writing some low-
level components of system software such as operating systems. Today, most
assembly language is actually written by compilers - many compilers translate
a HLL into assembly language, which then translates it into machine language
- though some compilers compile directly to machine language.

1. Example: The C and C++ compilers on most Unix systems work this way.

E.g. if we compile a C++ program called foo.cc into an object program
foo.o using the command|

g++ -c foo.cc

We actually get an intermediate file called foo.s which is then translated to
get foo.o

2. Normally, the assembly code is deleted after it is assembled. However, you
can use the -S command line switch to stop the process after the assembly
code is produced.

DEMO:

Create the following simple program demo.cc:

int x, y, z;

void foo()
{
 x = y + z;
}

Compile using gcc -S demo.cc

19

Show demo.s.

Note that there is a _lot_ of overhead code associated with entering and
exiting a function.

Note several lines that are immediately recognizable:

lw $2,y
lw $3,z
addu $2,$2,$3
sw

(Note: the addu instruction is very similar to the add instruction we have
considered, except that it does not do any checking for overflow. We will
consider how MIPS add handles overflow later; note that C programs
simply ignore overflow!)

C. Historically, there has been a one-to-one correspondence between lines of
assembly language code and machine instructions - e.g. the symbolic
operation code corresponds directly to a machine language op code, and each
line of assembly language produces exactly one machine instruction.

1. However, on RISCs this is not necessarily true - many RISC assemblers
will accept some constructs that assemble into more than one machine
instruction, and will synthesize certain RISC instructions from assembly
language instructions that do not correspond directly to a machine
instruction.

2. Example: in the above - the various load and store instructions may
require more than one machine instruction.

Ex: lw $2,y

If y's address is <= 32767, this can be encoded in a single I ormat lw
instruction. However, if y's address is >= 32768, it may be necessary to
synthesize a sequence of instructions that put the address of y into some
temporary register (at), and then the instruction lw $2, 0(at). Thus, this
one line could translate into as many as three machine language
instructions.

3. Example: The MIPS assemblers recognize certain pseudo-instructions that
can be synthesized from other actual machine instructions.

a) Example: Suppose we want to copy the value in $2 into $3. How can

20

we do this using MIPS instructions we already know?

ASK

add $3, $2, $0

The MIPS assembler will accept the pseudo instruction:

move $3, $2

which does not directly correspond to any MIPS machine instruction,
and will synthesize an instruction like the above when it occurs.

b) Example: Suppose we want to load a constant (say 42 = 2a hex) into
register 2. How can we do this using instructions we know?

ASK

ori $2, $0, 42

The MIPS assembler will accept the pseudo instruction:

li $2, 42

which does not directly correspond to any MIPS machine instruction,
and will synthesize an instruction like the above when it occurs.

4. The pipelined implementation of MIPS requires that we cannot use a value
loaded from memory on the very next instruction. (This has to do with
the fact that execution of successive instructions is overlapped in time.)
Sometimes the assembler needs to insert a "do nothing" instruction to
ensure that values are valid. (We will discuss this later in the course, and
will ignore it for now.)

D. You will get some experience working with the MIPS assembler in lab.

21

VIII. An Example

A. To put everything together, consider the compilation of the following C/C++
assignment:

int answer;
int x, y;
int a[10];
int i;

answer = (x + a[i]) - (y + 1);

B. MIPS assembly language (ignoring load delays). Assume, for simplicity, that
all variables are in a low address region of memory, so they can be accessed
by a 16-bit address. (A more realistic situation would involve 32-bit
addresses, but that's not the point here.)

lw $8, i # $8 = value of i
sll $8, $8, 2 # $8 = 4*i
lw $8, a($8) # $8 = word at address of a + 4 * i = a[i]
lw $9, x # $9 = x
add $8, $9, $8 # $8 = x + a[i]
lw $9, y # $9 = value of y
addi $9, $9, 1 # $9 = y + 1
sub $8, $8, $9 # $8 = (x + a[i]) - (y + 1)
sw $8, answer

C. MIPS machine language. Assume, for simplicity, that answer is at 100, x at
104, y at 108, a at 112, and i at 152 - all decimal.

ASK class to develop

lw $8, i # $8 = value of i

35 0 8 152 (values in decimal)
100011 00000 01000 0000000010011000 (values in binary)
1000 1100 0000 1000 0000 0000 1001 1000 = 0x8c080098

sll $8, $8, 2 # $8 = 4*i

0 0 8 8 2 0
000000 00000 01000 01000 00010 000000
0000 0000 0000 1000 0100 0000 1000 0000 = 0x00084080

22

lw $8, a($8) # $8 = word at address of a + 4 * i = a[i]

35 8 8 112
100011 01000 01000 0000000001110000
1000 1101 0000 1000 0000 0000 0111 0000 = 0x8d080070

lw $9, x # $9 = x

35 0 9 104
100011 00000 01001 0000000001101000
1000 1100 0000 1001 0000 0000 0110 1000 = 0x8c090068

add $8, $9, $8 # $8 = x + a[i]

0 8 9 8 0 32
000000 01000 01001 01000 00000 100000
0000 0001 0000 1001 0100 0000 0010 0000 = 0x01094020

lw $9, y # $9 = value of y

35 0 9 108
100011 00000 01001 0000000001101100
1000 1100 0000 1001 0000 0000 0110 1100 = 0x8c09006c

addi $9, $9, 1 # $9 = y + 1

8 9 9 1
001000 01001 01001 0000000000000001
0010 0001 0010 1001 0000 0000 0000 0001 = 0x21290001

sub $8, $8, $9 # $8 = (x + a[i]) - (y + 1)

0 8 9 8 0 34
000000 01000 01001 01000 00000 100010
0000 0001 0000 1001 0100 0000 0010 0010 = 0x01094022

sw $8, answer

43 0 8 100
101011 00000 01000 0000000001100100
1010 1100 0000 1000 0000 0000 0110 0100 = 0xac080064

23

