
SCAN CONVERTING POLYGONS

JONATHAN R. SENNING

1. OVERVIEW

The algorithm described here can be used to scan convert a nonconvex polygon. Holes
within the polygon are not allowed and none of the polygon’s edges must cross any other
edges of the polygon. The polygon is specified by a vertex list, with the vertices given in
a counterclockwise order around the polygon.

The basic approach is to generate a list of edges for the polygon and then make neces-
sary modifications so that when moving from left to right along a scan line an edge will
indicate a change from the polygon’s interior to exterior or vice-versa.

2. TRANSFORM THE VERTEX LIST TO AN EDGE LIST

The first step is to generate an edge list from the vertex list. As this is done, some non-
horizontal edges may be shortened so that no more than one edge intersects any position
in the raster.

Let {v1, v2, . . . , vn} denote the list of vertices, where vi = (xi, yi). Let {e1, e2, . . . , en}
denote the list of edges, where the edge ei is constructed from the vertices vi and vi+1 with
the understanding that vn+1 = v1. This gives

ei = {(xi, yi), (xi+1, yi+1)}, i = 1, 2, . . . , n− 1

en = {(xn, yn), (x1, y1)}

Note that vertex vi is common to both edges ei−1 and ei.
It is important that there be an even number of edges intersecting each scan line. On

scan lines which do not contain any of the polygon’s vertices this will be true. At the
location of some vertices, however, there may be an odd number of edges and so at least
one edge must be shortened to change this. If

dxi = (xi+1 − xi), dyi = (yi+1 − yi)

then
(1) If dyi 6= 0 and dyi+1 6= 0 (neither edge is horizontal) then

• If dyi and dyi+1 have different signs then do not shorten either edge.
• If dyi and dyi+1 have same sign then shorten either ei−1 or ei.

(2) If dyi = 0 or dyi+1 = 0 (at least one edge is horizontal) then
• If (dxi+1)(dyi) ≤ (dxi)(dyi+1) then do not shorten either edge.
• If (dxi+1)(dyi) > (dxi)(dyi+1) then shorten the non-horizontal edge.

This logic can be coded in the following manner:

Date: Written in 1993. Revised 2001, 2006.
1



k ← (dyi)(dyi+1)
if k < 0 then

do not shorten either edge
else if k > 0 then

shorten either edge
else

if (dxi)(dyy+1) ≤ (dxi+1)(dyi) then
do not shorten either edge

else
shorten non-horizontal edge

endif
endif

Once the edge list with shortened edges has been generated, all horizontal edges are
removed. This creates a new list of edges, denoted {ê1, ê2, . . . , êm} where m ≤ n since
the number of non-horizontal edges is less than or equal to the number of edges on the
polygon. The circumflex above the ei denotes that these are the edges in the edge set after
the horizontal edges have been removed.

The mapping from vertex list to shortened edge list to shortened edge list with no
horizontal edges can be diagrammed as

{v1, v2, . . . , vn} → {e1, e2, . . . , en} → {ê1, ê2, . . . , êm}.

Figure 1 shows the steps of edge shortening and horizontal edge removal.

sv7

�
�

�
�	

sv6

HHH
HY sv5

6

sv4-sv3@
@R

sv2

�
��sv1

A
A
A
AU

sv10 � sv9?

sv8-

Original Edge Set

s
�

�
�

�	

s
HHHHY ss

6

s-s@
@R

s
�

��s
A
A
A
AU

s� ss?
ss-

e6 e5

e4

e3
e2e1e10

e9

e8

e7

Shortened Edge Set

s
�

�
�

�	

s
HHH

HY ss
6

ss@
@R

s
�

��s
A
A
A
AU

s s?
s

ê5 ê4

ê3

ê2ê1ê7

ê6

Final Edge Set

FIGURE 1. Vertex List to Edge List Conversion

3. INCREMENTAL CALCULATION OF EDGE POINTS

The computation of the point of intersection between a scan line and an edge is made
somewhat more efficient than might be expected by the property of coherence. If the
point of intersection of the edge and a given scan line is known, computing the edge’s
point of intersection on an adjacent scan line is straightforward.

The points (xi, yi) and (xi+1, yi+1) are both on an edge with slope m provide that

yi+1 − yi = m(xi+1 − xi)
2



and between adjacent scan lines yi+1 − yi = 1 so we find

xi+1 = xi +
1

m
.

This means that if xi is the point where the edge intersects the ith scan line, then the point
at which that same edge intersects the i + 1st scan line is at xi+1 = xi + 1/m.

Since m and 1/m are rational numbers, floating point data must be used for x in order
to compute xi+1 correctly from xi. Alternatively, a Bresenham-style algorithm could be
used to avoid the use of floating point numbers.

4. EDGE TABLE CONSTRUCTION

The next step is to associate each scan line with the edges it intersects. This is done by
indexing the edges by the smallest y-value on each edge.

Let yi be the minimum y-value on edge êi; this will of course be the y-value at one of
the edge’s endpoints. Figure 2 shows what the yi values are are for the example polygon.

s
�

�
�

�	

s
HHHHY ss

6

ss@
@R

s
�

��s
A
A
A
AU

s s?
s

ê5 ê4

ê3

ê2ê1ê7

ê6

y1

y2

y3

y4

FIGURE 2. How minimum y values are used to construct edge table

Each edge êi can be associated with one of y1, y2, y3 and y4 since these comprise the set
of minimum y values for all of the edges. This association results in the following logical
edge table:

y1 : {ê1, ê2, ê3, ê7},
y2 : {ê6},
y3 : {ê5},
y4 : {ê4}.

Assume that the frame buffer is updated from bottom to top, scan line by scan line. As
each scan line is processed, the edge table is checked to determine if any edges start on the
scan line. The necessary information about each edge must also be included in the edge
table. This includes the information necessary to compute the x value of the intersection
between a given scan line and each edge and the y value of the scan line at which the edge
ends.

As discussed above, each edge has a minimum y value, identified ymin. Call the corre-
sponding x value for that endpoint xmin even though the xmin value may be greater than
the x value of the other endpoint.

3



Only the minimum amount of data necessary to determine all points on the edge
should be stored in the edge table. This can be done by storing xmin, ymin, 1/m, and
ymax. Note that ymin is stored implicitly as the index into the table, while the other three
values need to be stored explicitly. Although the algorithm being described does not use
it directly, the following pseudo-code shows that the information stored for an edge in
the edge table is sufficient to compute all the points on the edge.

x← xmin (x is a floating point variable)
y ← ymin (y is an integer variable)
minv ← 1/m (m is the slope and is a floating point variable)
while ( y ≤ ymax ) do

set pixel( round( x ), y )
x← x + minv

y ← y + 1
end while

The data structure for the edge table can be an array with one entry for each scan line
where the ith array element is a pointer to a linked list containing all edges whose ymin

value is yi. If no edge begins on a given scan line, the corresponding entry in the edge
table should be NIL. The edge table data structure is shown in Figure 3. All the edges
with ymin = yi should be stored in order of increasing xmin.

0
1

yi

ymax

s - xmin
1
m

ymax

First edge with ymin = yi

s - xmin
1
m

ymax

Second edge with ymin = yi

s - · · ·

FIGURE 3. Edge Table Data Structure

5. ACTIVE EDGE LIST (AEL)

Once the edge table has been constructed, the process of updating the frame buffer can
begin. This is done by starting at the bottom scan line, y = 0, and working up. The first
step in processing each new scan line is to look in the edge table to determine if any edges
start on the scan line. If so, then the edge specification must be merged into another data
structure, the Active Edge List (AEL), sometimes called an Active Edge Table.

The AEL is a dynamic structure that contains an entry for each edge that intersects the
scan line currently being processed. Thus, before the processing of the scan line begins,
a check is made of the edge table to see if any new edges need to be added to the AEL
(i.e., an edge starts on the current scan line). Then the AEL is examined to which portions

4



of the scan line should be filled. Finally, the data in the AEL is updated so that it will be
correct for the next scan line and any edges for which ymax has been reached are removed.

The AEL is easily implemented as a linked list whose elements have the same fields as
the elements of the edge table; see Figure 4. The value of xcurrent is initially set to xmin and
incremented by 1/m after each scan line is processed.

head

s - xcurrent
1
m

ymax s - · · ·

float float integer

xcurrent
1
m

ymax s

FIGURE 4. Active Edge List Data Structure

When merging edges from the edge table into the AEL, the edges should be inserted in
order of increasing xcurrent values. This ensures that the interior of the polygon is filled
correctly. If duplicate xcurrent values are encountered either one may appear first, as-
suming that after updating the xcurrent values the AEL is reordered in increasing xcurrent

values.

6. SUMMARY OF ALGORITHM

The algorithm described here can be summarized as follows.
construct edge list with shortened edges
remove horizontal edges from edge list
create edge table using the shortened edge descriptions
initialize AEL to an empty list
for y = 0 to number of scan lines − 1 do

if edge table[y] 6= NIL then
merge edges pointed to by y in edge table into AEL

plot pixels along scan line between pairs of edges
purge edges from AEL for which ymax = y
update each xcurrent value in AEL
reorder AEL (sort on xcurrent values)

end for

E-mail address: jonathan.senning@gordon.edu

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, GORDON COLLEGE, 255 GRAPEVINE ROAD,
WENHAM MA, 01984

5


