Mathematical Induction Problems

- 1. (Problem 10 in text) For any integer $n \ge 0$, it follows that $3|(5^{2n} 1)$.
- 2. (Problem 20 in text) Prove that

$$(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3$$

for every $n \in \mathbb{N}$.

3. (Problem 26 in text) Concerning the Fibonacci sequence, prove that

$$\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}.$$

4. For any integer $n \ge 2$, it follows that $2^{3n} - 1$ is not prime (prove using induction).

Hint: To show an integer is not prime you need to show that it is a multiple of two natural numbers, neither of which is 1. It turns out that in this problem not only is $2^{3n} - 1$ not prime for all $n \ge 2$, it is a multiple of a particular integer, say k. Check enough cases so that you figure out what k should be and rephrase the problem as "For any integer $n \ge 2$, it follows that $k \mid (2^{3n} - 1)$."

5. (Bonus question) We define the *Pell Sequence* by the initial values $p_1 = 1$ and $p_2 = 2$ along with the recurrence relation

$$p_n = 2p_{n-1} + p_{n-2}.$$

This means that

$$p_{1} = 1$$

$$p_{2} = 2$$

$$p_{3} = 2p_{2} + p_{1} = 5$$

$$p_{4} = 2p_{3} + p_{2} = 12$$

$$p_{5} = 2p_{4} + p_{3} = 29$$

.

Proposition. Prove by induction on n that $2p_n^2 + (-1)^n = (p_{n+1} - p_n)^2$.

Hint: The recurrence can be rewritten as

$$p_n - p_{n-1} = p_{n-1} + p_{n-2} \tag{1}$$

and the relation you need to prove can be written as

$$(p_{n+1} - p_n)^2 - 2p_n^2 = (-1)^n. (2)$$

Proceed as usual: Let S_n be the statement given by (2). Show S_1 and S_2 are true. Now assume that $S_1, S_2, ..., S_k$ have all been validated and show S_{k+1} is true where

$$S_{k+1}: (p_{k+2} - p_{k+1})^2 - 2p_{k+1}^2 = (-1)^{k+1}.$$
(3)

Replace $p_{k+2} - p_{k+1}$ in the left-hand side of (3) using (1) with n = k+2 and expand and simplify. Show that this yields

$$-p_{k+1}^2 + 2p_{k+1}p_k + p_k^2.$$

Factor out a (-1) and complete the square. From there you should be able to use S_k (write it out if you need to), which we have assumed to be true, to finish things off.