Proofs Involving Sets

MAT231

Transition to Higher Mathematics

Fall 2014

MAT231 (Transition to Higher Math)

Proofs Involving Sets

 표 전 및 전 및

 Fall 2014
 1 / 11

(日) (同) (三) (三)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Proposition

If $k \in \mathbb{Z}$, then $\{n \in \mathbb{Z} : n | k\} \subseteq \{n \in \mathbb{Z} : n | k^2\}$.

MAT231 (Transition to Higher Math)

Proofs Involving Sets

 표 전 및 전 및

 Fall 2014
 3 / 11

A (10) A (10) A (10)

Proposition

If $k \in \mathbb{Z}$, then $\{n \in \mathbb{Z} : n | k\} \subseteq \{n \in \mathbb{Z} : n | k^2\}$.

Proof.

Suppose $k \in \mathbb{Z}$ and let $K = \{n \in \mathbb{Z} : n | k\}$ and $S = \{n \in \mathbb{Z} : n | k^2\}$. Let $x \in K$ so that x | k. We can write k = ax for some $a \in \mathbb{Z}$. Then $k^2 = (ax)^2 = x(a^2x)$ so $x | k^2$. Thus, $x \in S$. Since any element x in K is also in S, we know that every element x in K is also in S, thus $K \subseteq S$.

Proposition

Suppose A, B, and C are sets. If $B \subseteq C$, then $A \times B \subseteq A \times C$.

(日) (同) (三) (三)

Proposition

Suppose A, B, and C are sets. If $B \subseteq C$, then $A \times B \subseteq A \times C$.

Proof.

Let sets A, B, and C be given with $B \subseteq C$. Then

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Let $(x, y) \in A \times B$. Then $x \in A$ and $y \in B$. Since $B \subseteq C$, we know $y \in C$, so it must be that $(x, y) \in A \times C$. Thus $A \times B \subseteq A \times C$.

- 4 B M 4 B M

Proposition

If A, B, and C are sets, then $A - (B \cup C) = (A - B) \cap (A - C)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

If A, B, and C are sets, then
$$A - (B \cup C) = (A - B) \cap (A - C)$$
.

Proof.

Suppose A, B and C are sets and let $x \in A - (B \cup C)$. Then

$$x \in A - (B \cup C) \equiv (x \in A) \land (x \notin (B \cup C))$$
$$\equiv (x \in A) \land (x \in \overline{(B \cup C)})$$
$$\equiv (x \in A) \land (x \in \overline{(B \cap \overline{C})})$$
$$\equiv (x \in A) \land (x \in \overline{B}) \land (x \in \overline{C})$$
$$\equiv (x \in A \land x \in \overline{B}) \land (x \in A \land x \in \overline{C})$$
$$\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$
$$\equiv x \in (A - B) \land x \in (A - C)$$
$$\equiv x \in (A - B) \cap (A - C)$$

Proposition

If A, B, and C are sets, then $A - (B \cup C) = (A - B) \cap (A - C)$.

イロト イヨト イヨト イヨト

Proposition

If A, B, and C are sets, then $A - (B \cup C) = (A - B) \cap (A - C)$.

Proof.

(Continued) This result shows that $A - (B \cup C) \subseteq (A - B) \cap (A - C)$. To show $(A - B) \cap (A - C) \subseteq A - (B \cup C)$ we start with $x \in (A - B) \cap (A - C)$.

< 回 ト < 三 ト < 三 ト

Proposition

If A, B, and C are sets, then $A - (B \cup C) = (A - B) \cap (A - C)$.

イロト イヨト イヨト

Proposition

If A, B, and C are sets, then
$$A - (B \cup C) = (A - B) \cap (A - C)$$
.

Proof.

(Continued)

$$x \in (A - B) \cap (A - C) \equiv (x \in (A - B)) \land (x \in (A - C))$$
$$\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$
$$\equiv (x \in A \land x \in \overline{B}) \land (x \in A \land x \notin \overline{C})$$
$$\equiv (x \in A) \land (x \in \overline{B}) \land (x \in \overline{C})$$
$$\equiv (x \in A) \land (x \in (\overline{B}) \land (x \in \overline{C}))$$
$$\equiv (x \in A) \land (x \in (\overline{B \cap C}))$$
$$\equiv (x \in A) \land (x \notin (B \cup C))$$
$$\equiv x \in A - (B \cup C)$$

Proof.

(Continued) Since each set is a subset of the other, we have established the equality of the two sets so $A - (B \cup C) = (A - B) \cap (A - C)$.

MAT231 (Transition to Higher Math)

Proofs Involving Sets

Fall 2014 8 / 11

A B F A B F

This same proposition can be proved with a single derivation.

Proof.

Suppose A, B and C are sets. Then

$$A - (B \cup C) = \{x : x \in A - (B \cup C)\}$$

$$= \{x : (x \in A) \land (x \notin (B \cup C))\}$$

$$= \{x : (x \in A) \land (x \in \overline{(B \cup C)})\}$$

$$= \{x : (x \in A) \land (x \in \overline{(B \cap \overline{C})})\}$$

$$= \{x : (x \in A) \land (x \in \overline{B}) \land (x \in \overline{C})\}$$

$$= \{x : (x \in A \land x \in \overline{B}) \land (x \in A \land x \in \overline{C})\}$$

$$= \{x : (x \in A \land x \notin B) \land (x \in A \land x \notin C)\}$$

$$= \{x : x \in (A - B) \land x \in (A - C)\}$$

$$= \{x : x \in (A - B) \cap (A - C)\}$$

$$= (A - B) \cap (A - C).$$

Example A

Proposition

 ${p: p \text{ is a prime number}} \cap {k^2 - 1 : k \in \mathbb{N}} = {3}.$

(日) (周) (三) (三)

Example A

Proposition

$$\{p: p \text{ is a prime number}\} \cap \{k^2 - 1: k \in \mathbb{N}\} = \{3\}.$$

Proof.

Let

$$x \in \{p : p \text{ is a prime number}\} \cap \{k^2 - 1 : k \in \mathbb{N}\}$$

so that x is prime and $x = k^2 - 1 = (k - 1)(k + 1)$. This shows that x has two factors.

Every prime number has two positive factors 1 and itself, so either (k-1) = 1 or (k+1) = 1. Since these factors must be positive we know (k+1) cannot be 1 because this would mean k = 0. Thus (k-1) = 1 and therefore k = 2.

Thus $x = (2-1)(2+1) = 1 \cdot 3 = 3$, which is the only element of $\{p : p \text{ is a prime number}\} \cap \{k^2 - 1 : k \in \mathbb{N}\}.$

Example B

Prove this proposition using a proof by contradiction.

Proposition

 $\{2k+1: k \in \mathbb{N}\} \cap \{4k: k \in \mathbb{N}\} = \emptyset.$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example B

Prove this proposition using a proof by contradiction.

Proposition $\{2k + 1 : k \in \mathbb{N}\} \cap \{4k : k \in \mathbb{N}\} = \emptyset.$

Proof.

Suppose $\{2k + 1 : k \in \mathbb{N}\} \cap \{4k : k \in \mathbb{N}\} \neq \emptyset$. Then some element x exists for which $x \in \{2k + 1 : k \in \mathbb{N}\} \cap \{4k : k \in \mathbb{N}\}$ so that

$$x \in \{2k+1 : k \in \mathbb{N}\}$$
 and $x \in \{4k : k \in \mathbb{N}\}$

Since $x \in \{2k + 1 : k \in \mathbb{N}\}$ we know that x has the form 2k + 1 for a natural number k and so by definition x is odd. However, since $x \in \{4k : k \in \mathbb{N}\}$ we know that x has the form 4k = 2(2k) which, since k and hence 2k are natural numbers, means that x is even. Since x cannot be both even and odd we have a contradiction. Therefore $\{2k + 1 : k \in \mathbb{N}\} \cap \{4k : k \in \mathbb{N}\}$ cannot contain any element x, so it must be empty.

MAT231 (Transition to Higher Math)