
On the Versatility ofParallel Sorting by Regular SamplingXiaobo LiPaul LuJonathan Schae�erJohn ShillingtonPok Sze WongDepartment of Computing ScienceUniversity of AlbertaEdmonton, AlbertaCanada T6G 2H1Hanmao ShiDepartment of Computer ScienceUniversity of WaterlooWaterloo, OntarioCanada N2L 3G1ABSTRACTParallel sorting algorithms have already been proposed for a variety of multiple instructionstreams, multiple data streams (MIMD) architectures. These algorithms often exploit thestrengths of the particular machine to achieve high performance. In many cases, however, theexisting algorithms cannot achieve comparable performance on other architectures. ParallelSorting by Regular Sampling (PSRS) is an algorithm that is suitable for a diverse range ofMIMD architectures. It has good load balancing properties, modest communication needsand good memory locality of reference. If there are no duplicate keys, PSRS guarantees tobalance the work among the processors within a factor of two of optimal in theory, regardlessof the data value distribution, and within a few percent of optimal in practice. This paperpresents new theoretical and empirical results for PSRS. The theoretical analysis of PSRSis extended to include a lower bound and a tighter upper bound on the work done by aprocessor. The e�ect of duplicate keys is addressed analytically and shown that, in practice,it is not a concern. In addition, the issues of oversampling and undersampling the data areintroduced and analyzed. Empirically, PSRS has been implemented on four diverse MIMDarchitectures and a network of workstations. On all of the machines, for both random andapplication-generated data sets, the algorithm achieves good results. PSRS is not necessarilythe best parallel sorting algorithm for any speci�c machine. But PSRS will achieve goodperformance on a wide spectrum of machines before any strengths of the architecture areexploited. 1



1 IntroductionSorting is a problem of fundamental interest in computing science. For n data items, se-quential comparison-based sorting has a time complexity of 
(n log n) and mergesort, forexample, is O(n log n), leaving no possibility for substantial improvements in sequential al-gorithms. However, signi�cant improvements may be possible through parallelism. Manyinnovative MIMD parallel sorting algorithms have been proposed. In particular, extensiveresearch has been done with sorting on hypercubes ([1, 4, 10, 14, 17, 18, 19], for example),shared memory architectures ([5, 12, 21], for example) and networks of workstations ([13, 20],for example). These algorithms often exploit the strengths of the architecture, while tryingto minimize the e�ects of the weaknesses. Unfortunately, these algorithms usually do notgeneralize well to other MIMD machines.Parallel Sorting by Regular Sampling (PSRS) is a new MIMD parallel sorting algorithm[15, 16]. The regular sampling load balancing heuristic distinguishes PSRS from other parallelsorting algorithms. Regular sampling has good analytical and empirical properties. Also,PSRS has modest communication needs and exhibits good per task locality of reference,reducing memory and communication contention. In theory, if there are no duplicate datavalues, PSRS guarantees to distribute the work among processors within a factor of two ofoptimal load balancing, regardless of the data value distribution. In practice, PSRS achievesnear-perfect load balancing.This paper makes three important contributions to our understanding of PSRS:1. New analytical results. Given p processors and n keys to sort, the ideal case is thateach processor works on np data items. It has been proven that in PSRS, no processorhas to work on more than 2np data items if n � p3, assuming no duplicate keys [15, 16].In this paper, a lower bound (L = np2 + p� 1) and a tighter upper bound (U = 2np �L)on the amount of work done by each processor is proven. Other results on the loadbalancing bounds are also presented.2. Addresses the duplicate keys issue. Some algorithms depend on having an uniformdata value distribution to achieve good load balancing ([10], for example), or restrict thedata to contain no duplicates1 ([1, 22], for example). PSRS can handle arbitrary datavalue distributions and further analysis shows that the presence of duplicates increasesthe upper bound on load balancing linearly. If a single key can be duplicated amaximumof d times (d = 0 implies no duplicates), then the upper bound on the numberof data items a processor must work with becomes U 0 = U + d. If more than one datavalue is duplicated, then d represents the key with the most number of duplicates. Sincethe 2np term dominates the bound, duplicates do not cause problems until individualkeys are repeated O(np ) times. This point is illustrated empirically by running PSRSon some application-generated data (the IMOX data set, utilized extensively in imageprocessing and pattern recognition [2]) that contains a high percentage of duplicateitems.3. New empirical results. The original implementation of the algorithm was on avirtual memory, demand-paged Myrias SPS-2 with 64 processors. It achieved a 44-fold1It is assumed that there is no computationally inexpensive way of removing duplicates. Techniques suchas adding secondary keys may require substantial modi�cations to the data.2



speedup while sorting 8,000,000 four-byte integers [15, 16]. This paper describes theperformance of PSRS on a BBN TC2000 (shared memory), an Intel iPSC/2-386, aniPSC/860 (distributed memory with hypercube interconnections), and a network ofworkstations (distributed memory with a LAN interconnection). In all cases, goodspeedups are reported for problems of su�cient granularity, demonstrating that PSRScan be successfully used on a variety of di�erent MIMD machines.Although there is a plethora of parallel sorting algorithms, few have the overall versa-tility of PSRS:1. Good analytical properties. There is a good theoretical upper bound on the worstcase load balancing.2. Robust on di�erent data sets. Arbitrary data value distributions do not causeproblems. Unless individual keys are repeated O(np ) times, theoretical and empiricalresults show that duplicates are not a problem.3. Suitable for di�erent architectures. It is empirically shown to be suitable for adiverse range of MIMD architectures. Although PSRS may not be the best parallelsorting algorithm for any particular MIMD architecture, it is a good algorithm for awide spectrum of architectures.Section 2 describes the PSRS algorithm. Section 3 provides an analysis of the algo-rithm, in particular its load balancing properties. Section 4 presents empirical results of im-plementing PSRS on 4 machines (3 di�erent architectures), for both random and application-generated data. Section 5 provides some concluding perspectives on PSRS.2 The PSRS AlgorithmPSRS is a combination of a sequential sort, a load balancing phase, a data exchange and aparallel merge. Although any sequential sorting and merge algorithm can be used, PSRS isdemonstrated using quicksort2 and successive 2-way merge. Given n data items3 (indices 1,2, 3, ..., n) and p processors (1, 2, 3, ..., p), PSRS consists of four phases. Note that thisdescription di�ers slightly from that in [15, 16].Refer to Figure 1 for an example, with n = 36, p = 3 and the keys 0, 1, 2, ..., 35. Forbrevity, let � = bp2c and w = np2 .1. Phase One: Sort Local Data. Each processor is assigned a contiguous block ofnp items. The blocks assigned to di�erent processors are disjoint. Each processor, inparallel, sorts their local block of items using sequential quicksort.Begin the regular sampling load balancing heuristic. All p processors, in parallel, selectthe data items at local indices 1; w+1; 2w+1; :::; (p�1)w+1 to form a representativesample of the locally sorted block4. The p2 selected data items, p from each of p2For n data items, quicksort is O(n logn) in practice, but may have a worst case of O(n2). If this is aproblem, an algorithm with a worst case of O(n logn), such as mergesort, can be used.3The terms data items, data values and keys are used interchangeably4Note that including the �rst key of the list is unnecessary. It is included to simplify the analysis, allowingeach of p processors to take p samples, instead of p � 1. Including this extra sample does not a�ect theanalysis nor alter the behavior of the algorithm. 3



processors, are a regular sample of the entire data array. The local regular samplesrepresent the keys and their value distribution at each processor.In Figure 1, each processor is assigned np = 12 contiguous keys to sort. Each processortakes three samples, at the 1st, 5th and 9th indices since w = np2 = 4, to form the localregular sample. Note that the distance between the indices of the samples is of �xedsize.2. Phase Two: Find Pivots then Partition. One designated processor gathers andsorts the local regular samples. p�1 pivots are selected from the sorted regular sample,at indices p + �; 2p + �; 3p + �; :::; (p� 1) + �. Each processor receives a copy of thepivots and forms p partitions from their sorted local blocks. A partition is contiguousinternally and is disjoint from the other partitions.In Figure 1, the 9 samples are collected together and sorted. From this list (0, 3, 7,10, 13, 16, 22, 23, 27), p � 1 = 2 pivots are selected. The pivots are 10 and 22 (at the4th and 7th indices), because � = bp2c = 1. All processors then create three partitions.3. Phase 3: Exchange Partitions. In parallel, each processor i keeps the ith partitionfor itself and assigns the jth partition to the jth processor. For example, processor1 receives partition 1 from all of the processors. Therefore, each processor keeps onepartition, and reassigns p � 1 partitions.For example, in Figure 1, processor 3 sends the list (3, 4, 5, 6, 10) to processor 1, sends(14, 15, 20, 22) to processor 2, and keeps (26, 31, 32) for itself.4. Phase 4: Merge Partitions. Each processor, in parallel, merges its p partitionsinto a single list that is disjoint from the merged lists of the other processors. Theconcatenation of all the lists is the �nal sorted list.Note that in Figure 1, the keys in the �nal merged partitions at each processor arealso partitioned by the pivots 10 and 22. The �nal sorted list is distributed over the 3processors.On a distributed memory MIMD architecture, information is communicated with mes-sages: the local regular samples from Phase 1 (p messages of size O(p)), the pivots of Phase 2(p messages of size O(p)) and the partitions of Phase 3 (p processors sending p� 1 messagesof size O(np )). On a shared memory architecture, all information is communicated throughshared memory. In particular, Phase 3 reduces to reading and writing partitions from andto shared memory.For pseudo-code and more details, please refer to [15, 16].Intuitively, the notion of a regular sample to estimate the value distribution of thekeys is appealing. By sampling the locally sorted blocks of all the processors, and not justa subset, the entire data array is represented. By sampling after the local blocks have beensorted, the order information of the data is captured. Since the pivots, as selected in Phase2, divide the regular sample into almost equal partitions, the pivots should also divide theentire data array into nearly equal partitions. Also, the �xed distance intervals of the regularsampling heuristic allows a formal analysis of its e�ectiveness, which is presented in the nextsection.Given the extensive literature on parallel sorting, it is not surprising that PSRS issimilar to other algorithms. For example, PSRS is similar to the balanced bin sort [22] and4
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the load balanced sort [1]. However, both have di�erent approaches to load balancing thanPSRS. The balanced bin sort's heuristic is also based on sampling, and results in an upperbound of 3np items that must be merged by a single processor. The bound is inferior toPSRS'. The load balanced sort uses an algorithm that samples and then iteratively modi�esits choice of pivots until it achieves perfect load balancing. The overhead of iterating issigni�cant because it requires additional messages and synchronization for each iteration.Also, since the algorithm iterates until perfect load balancing is achieved, duplicate keys areproblematic.The description of PSRS given above speci�es that the number of samples, s, taken byeach processor in Phase 1 is equal to p (i.e. s = p). However, it is a natural and commonextension of sampling-based algorithms to consider the techniques of undersampling (s < p)and oversampling (s > p). Intuitively, since the number of samples represents the amount ofinformation available to the load balancing heuristic, undersampling results in poorer loadbalancing and oversampling results in better load balancing. These variations of the regularsampling heuristic will also be considered later on.PSRS combines many of the successful aspects of the MIMD sorting algorithms thatpreceded it, and introduces the simple, but e�ective notion of a regular sample to helppick good pivots for the �nal parallel merge. The regular sample is the key, non-cosmeticdi�erence between PSRS and similar sorting algorithms.3 Time Complexity and Load BalancingFor all architectures, the time complexity of PSRS is asymptotic to O(np log n) when n � p3,which is cost optimal [15, 16].Another important concern in parallel sorting is load balancing. In Phase 1, the work-load is evenly distributed to all processors. Phase 2 is largely sequential. Phase 3 dependson the communication properties of the computer. This section concentrates on the loadbalancing issue in Phase 4. A lower bound and a tighter upper bound on the number of dataitems each processor must merge are presented. The analysis is a function of the number ofdata items to be sorted, the number of processors used, the sample size and the number oftimes a data item is duplicated.The keys to be sorted are the set fXkgnk=1. There are at most d + 1 duplicates of anydistinct value, d � 0; i.e., for any Xk, there are at least n � d � 1 other Xl values withXl 6= Xk. The number of processors used is p, p � 2 and p is usually a power of 2. Thequantity b s2c is useful and is denoted by a shorthand notation �. In Phase 1, each processortakes s local regular samples, and when gathered and sorted, the regular samples form theordered set fYjg. In essence, each sample Yj represents a group of (w�1) X elements whosekeys are greater than Yj but less than the next sample, Yj+1, with w = nps . For convenience,it is assumed that (ps)jn and w � 2. In Phase 4, processor i will merge �i X elements, whichare the elements between the (i�1)th pivot and the ith pivot. N(cond) denotes the numberof X elements satisfying a certain condition cond. For example, N(� Y(i�1)s+�) representsthe size of the set fXkjXk � Y(i�1)s+�g.For easy reference, the above notations are summarized below.6



fXkgnk=1 keys to be sortedfYjgs�pj=1 regular samples, fYjg � fXkgs the number of sample Y 's taken by each processor in Phase 1p the number of processors usedd the number of duplicates for the key with the most duplicates� b s2cw nps , it is assumed that (ps)jn and w � 2�i the number of X elements merged by processor i in Phase 4N(cond) the number of X elements satisfying a certain condition cond� 1� is the undersampling factor and s = p�The bounds for �i, the number of keys to merge per processor in Phase 4 is derived, inthe general case. The numerical example given in Section 2 is for a special case where d = 0and s = p.All the X elements to be merged in Phase 4 by processor i must be greater thanY(i�1)s+� and less than or equal to Yis+� .Lemma 1:Consider the X elements which are less than or equal to Y(i�1)s+�, which is a pivotselected in Phase 2, for processor i, where 1 � i � p:N(� Y(i�1)s+�)8><>: � w((i� 1)s+ � � p) + p if (i� 1)s+ � � p;� (i� 1)s+ � otherwiseProof:There are (i�1)s+� samples less than or equal to Y(i�1)s+�, and each of these samplesis within a group of w X elements. If (i� 1)s+ � � p, there are at most p groups each with(w�1) X elements greater than Y(i�1)s+�. Therefore,N(� Y(i�1)s+�) � ((i� 1)s + �)w � p(w � 1) = w((i� 1)s+ � � p) + p:If (i� 1)s+� < p, there are at least (i� 1)s+� samples less than or equal to Y(i�1)s+�, i.e.,N(� Y(i�1)s+�) � (i� 1)s + �:Lemma 2:Consider the X elements which are greater than ith pivot selected in Phase 2, Yis+� ,for processor i, where 1 � i � p:N(> Yis+�) � w((p � i)s� � + 1)� 1 � d:Proof:Consider the case of d = 0. There are sp� (is+�) = (p� i)s�� samples greater thanYis+� , i.e., w((p� i)s� �) elements of X greater than Yis+� . There are w�1 elements of X7



from the same processor as Yis+� immediately following Yis+� in the sorted list. These itemsare also greater than Yis+�. Therefore,N(> Yis+�) � w((p � i)s� �) + (w � 1) = w((p� i)s� � + 1) � 1:Consider the case of d > 0 duplicates of Yis+� :N(> Yis+�) � w((p � i)s� � + 1)� 1 � d:Based on the above lemmas, the bounds for �i are derived for three cases of i (i = 1,1 < i < p, and i = p). The upper and lower bounds in these cases are denoted by U1, L1,Ui, Li, Up and Lp, respectively. The overall bounds are denoted by U and L.1. Upper bound for i = 1:All the X elements to be merged by processor 1 must be less than or equal to Ys+� .By Lemma 2,N(> Ys+�) � w((p� 1)s� � + 1)� 1 � d = n �ws �w� + w � 1 � dand, �1 = n�N(> Ys+�) � U1 = w(s+ � � 1) + 1 + d:2. Lower bound for i = 1:By Lemma 1,if s+ � � p, then �1 = N(� Y(2�1)s+�) � L�1 = w(s + � � p) + p;if s+ � < p, then �1 = N(� Y(2�1)s+�) � L��1 = s+ �.3. Upper bound for i = p:All the X elements to be merged by processor p must be greater than Y(p�1)s+�. Since(p � 1)s+ � > p, by Lemma 1,N(� Y(p�1)s+�) � w((p � 1)s+ � � p) + pand �p = n�N(� Y(p�1)s+�) � Up = w(s � � + p) � p:4. Lower bound for i = p:By Lemma 2, �p = N(> Y(p�1)s+�) � Lp = w(s� � + 1)� 1� d:5. Upper bound for 1 < i < p:�i = n�N(� Y(i�1)s+�)�N(> Yis+�):If s � p, i.e., (i� 1)s + � � p, by Lemma 1 and Lemma 2,�i � Ui = U�i = n� (ps� s� p + 1)w � p + 1 + d = w(s+ p � 1)� p+ 1 + d:8



If s < p but (i� 1)s + � � p, �i � U�i .If s < p and (i� 1)s+ � < p,�i � Ui = U��i = n� ((i� 1)s + �)� (w((p � i)s� � + 1) � 1� d);which depends on i.In the case of s = p=� for integer � � 2, for 2 � i � �, we have (i� 1)s+ � < p, thusU� = w(�s + � � 1) � (� � 1)s � � + 1 + d. For i � � + 1, we have (i� 1)s + � � p,thus �i � w(s + p� 1)� p + 1 + d.6. Lower bound for 1 < i < p:There are s samples which are greater than Y(i�1)s+� and less than or equal to Yis+� .If s � p, there are (s� p)(w� 1) elements of X must be merged by processor i. Thereare w � 1 elements of X from the same processor as Y(i�1)s+� immediately followingY(i�1)s+� in the sorted list. These items are also greater than Y(i�1)s+�. Therefore,�i � Li = L�i = s+ (s� p)(w � 1) + (w � 1) = w(s� p + 1) + p � 1:If s < p, �i � Li = L��i = s.The overall bounds U and L are derived in three cases of sampling: s = p, s � p ands < p. When s � p, since w� > w � 1, then Up < Ui and L1 > Li, so U could only beeither U1 or Ui, and L could only be either Lp or Li. Using the above results, the followingtheorems present the bounds in overall case, U and L.Theorem 1 (Load Balancing Bounds for No Duplicates):When s = p and d = 0:L = np2 + p � 1U = 2(np )� np2 � p+ 1 = 2(np )� LProof:Since w� < wp � p, then U1 < Ui and Li < Lp, thus L = Li = w + p � 1 = np2 + p � 1and U = Ui = 2wp � w � p + 1 = 2(np )� L = 2(np )� np2 � p + 1.Note that when s = p and d � 0,U = 2(np )� np2 � p+ 1 + d:Theorem 2 (Load Balancing Bounds for Duplicates and Oversampling):In the case with oversampling (� = b s2c � p) and duplicates (d � 0):For 1 < i < p, Ui = np + ns (1� 1p)� p+ 1 + d;Li = np � ns (1� 1p) + p� 1:9



For 1 � i � p, U = (32)np � nps + 1 + d;L = (12)np + 2nps � 1� d:Proof:Since � � p, then U1 > Ui and Lp < Li, butU1 = np + npsbs2c � nps + 1 + d � np + nps(s2)� nps + 1 + d = (32)np � nps + 1 + dandLp = np � npsbs2c+ nps � 1 � d � np � nps (s2 � 1) + nps � 1 � d = (12)np + 2nps � 1 � d:Several conclusions can be drawn from the above theorems for the case s � p:1. Each processor will merge at least w = nps and at most 2(np )�w elements. If oversam-pling is used (s > p), the upper bound U becomes (32)np� nps+1+d, which is dominatedby the (32)np term, since the value of d is much smaller than np in practice.2. Duplicates increase upper bounds and reduce lower bounds linearly, and will causeonly a minor performance degradation, unless an item is duplicated O(np ) times.3. Oversampling improves the bounds for 1 < i < p, but not for i = 1 and i = p. Thusoversampling should improve the load balancing in most cases. The gains in Phase 4from oversampling may be o�set by the increased cost of Phase 2.The case of undersampling (s < p) is more complex. Only the upper bound for �i isgiven to show the e�ect of undersampling on load balancing, for the case s = p� for integer� � 2 and 1� is the undersampling factor.Either U� or Up could be larger depending on the value of d, which is stated in thefollowing theorem.Theorem 3 (Load Balancing Bounds for Duplicates and Undersampling):If d � 0 and s = p� , then U could be eitherU� = (� + 12)(np )� �np2 � 2��12� p + 1 + d; orUp = (� + 12)(np )� p:For example, when s = p2 , U could be eitherU2 = (52)(np )� 2np2 � 34p+ 1 + d; orUp = (52)(np )� p:10



When s = p4 , U could be eitherU4 = (92)(np )� 4np2 � 78p+ 1 + d; orUp = (92)(np )� p:It can be concluded for the undersampling case s = p� that:1. In the case of undersampling, the workload balancing in Phase 4 gets worse.2. The upper bound of the workload in Phase 4 increases linearly with �. It is approxi-mately � + 12 times the optimal (np ).3. Undersampling is justi�ed only if the time saving in Phase 2 is signi�cant.4 Empirical AnalysisThe theoretical results for PSRS discussed in the last section are encouraging. The up-per bounds on the load balancing are good, but how realistic are they in practise? In thissection, PSRS is analyzed from an empirical point of view. Implementations of PSRS on sev-eral di�erent MIMD machines are examined. Both uniformly distributed and nonuniformlydistributed data sets are considered.4.1 ImplementationsIn addition to the original Myrias SPS-2 implementation, PSRS has been implemented ona diverse range of MIMD computers: a BBN TC2000 (interleaved shared memory), InteliPSC/2-386 and iPSC/860 hypercubes (distributed memory with hypercube interconnec-tions) and a local area network (LAN) of workstations (distributed memory with a LANinterconnection). The number of processors available and the amount of memory per pro-cessor varies for the di�erent machines. Consequently, the number of experimental datapoints for each machine also varies. All four implementations are similar to the Myrias ver-sion of PSRS, with the exception that the methods of communication and synchronizationare machine dependent. All of the programs are written in C.The relative cost of communication most distinguishes the di�erent MIMD machines.It varies from expensive (message passing on a single shared bus) to relatively inexpensive(shared memory). It should be noted that the TC2000, iPSC/2-386 and iPSC/860 all havecommunication hardware whose bandwidth increases as the number of processors increases.Regardless of the number of processors used for our LAN of workstations, there is alwaysjust one physical wire and the LAN's bandwidth remains constant. For this reason, the LANresults re
ect greater communication overheads as the problem size and and the number ofprocessors increase.Little e�ort has been made to tailor the program to any of the targeted architectures.There are several machine and implementation-speci�c factors that could quickly turn ourexperiment into a programming exercise. The goal is to investigate the potential performanceof the algorithm in general, and not to benchmark speci�c machines or implementations.Therefore, none of the implementations are, in our opinion, optimized to the hardware.11



The BBN TC2000 is a tightly coupled MIMD multiprocessor with both shared andlocal memory. Each processor is a Motorola 88100 RISC processor. Although there are 16megabytes of RAM physically local to each processor, it is segmented into both shared andprivate portions. The shared memory portions on all processor boards are mapped into onecontinuous address space by the memory management hardware. Communication betweenprocessor boards is via a high bandwidth, multistage network based on the Butter
y switch.A reference to a memory location that is not physically local to the processor causes amemory access request to be sent to the processor board that does contain the data. In thisway, memory is transparently shared among the processors at the application code level.In the TC2000 implementation, the data array is kept in shared memory. However,local memory is used to cache each processor's disjoint piece(s) of the data array in Phases1 and 4. Since accessing shared memory is more expensive than local memory, the memoryaccess intensive operations of sequential sorting and merging are performed in local memory.In e�ect, shared memory is only used to communicate samples, pivots and data partitions.The program uses the PCP pre-processor to express the parallelism [6, 8].The iPSC (Intel Personal Super Computer) is a family of loosely-coupled distributedmemory multiprocessors based on the hypercube architecture. Each node of the iPSC/2-386 contains an Intel 80386 processor and 8 megabytes of RAM. Communication betweennodes is done via message passing over the hypercube nearest neighbor links. The iPSC/860uses an Intel i860 processor at each of the hypercube nodes instead of the 80386. Since thememory of the iPSC is distributed, all sorting and merging is performed in local memory.Data samples, pivots and data partitions are communicated between processors by messages.The program uses the standard Intel message passing libraries [9].The LAN implementations of PSRS use Sun 4/20 workstations connected by a singleEthernet with 10 megabit/second bandwidth. There are two di�erent LAN implementations,each using a di�erent message passing communications package. The �rst implementationuses the Network Multiprocessor Package (NMP) [11], a locally produced library that pro-vides a friendly high-level interface to sockets and TCP/IP. For large sorting problems, itwas discovered that the partitions in Phase 3 �ll all of the available message bu�ers, resultingin deadlock. Each processor, by default, has only 4K bytes of message bu�ers, which is in-su�cient for the volume of communication in Phase 3. The bu�er size can be increased, butonly to a system limit of 52K bytes. For su�ciently large problems, the program still dead-locks. To avoid this, the data is packaged into smaller pieces and is then sent using multiplesynchronized messages. Obviously, the extra synchronization adversely a�ects performance.The second implementation uses the ISIS package from Cornell (version 2.1) [3]. It isclaimed that ISIS provides communication performance as fast as remote procedure calls.However, our version of ISIS requires 30% of each packet as overhead for control information,thus increasing the number of packets needed and decreasing communication throughputperformance. Programs written in ISIS execute in the form of tasks/threads. Also, the com-munication protocols of ISIS are timer based. Extra time is required in the communicationprotocol, memory management and tasking layers of ISIS. These considerations restrict thespeedups obtainable for PSRS.Of the two implementations, the NMP-based version provide the better results andthey are reported here. Although the speedups are respectable for a LAN-based MIMDmachine, they should be viewed as lower bounds since an awkward work-around for thelimited bu�er sizes of our system is required.12



4.2 Performance Measures and Sequential TimingsSpeedup is a measure of how much faster a task can be performed with many processorscompared with one processor: Sp = T1=Tpwhere Sp is the speedup for p processors, T1 is the sequential processing time, and Tp is theprocessing time with p processors.Speedup e�ciency is a measure of how the observed speedup compares with linearspeedup, which is ideal. It is de�ned as: Ep = Sp=pImplicitly, e�ciency measures the portion of time each processor spends doing \useful" workthat contributes to the �nal solution.Because of the large size of some of the data sets, it is impossible to record some of thesingle processor times. In these situations, the single processor time is extrapolated basedon the known time of the largest array that could be sorted in local memory without paging.The following formula is used to extrapolate the times for each machine:T1(n) = n log n1; 000; 000 log 1; 000; 000 � T1(1; 000; 000)where T1(n) is the extrapolated time for 1 processor sorting n elements, and T1(1; 000; 000)is the measured time required for 1 processor to sort 1,000,000 elements.4.3 Experiments Using Random DataExperiments sorting arrays of integers created with a pseudo-random number generator areperformed. The values are uniformly distributed in the range 0 through 232 � 1. Each datapoint reported in the tables below represent the average results over �ve di�erent sets ofrandom data. Each set of data is created using a di�erent random number generator seedvalue. No tests are made for duplicate data items, of which there were undoubtably a few.Unless otherwise stated, the sample size is p.As is the convention in the literature, the data to be sorted is already distributed amongthe processors before the timing is begun. After the timing begins, the processors proceedwith the sequential quicksort of Phase 1. When all of the processors have �nished their mergeof Phase 4, the sort is considered complete and the timing ends. For distributed memorymachines, the �nal sorted data array remains distributed among the di�erent processorsat the end of the sort. The concatenation of the memories of the di�erent processors isconsidered to be the �nal sorted array. For the shared memory BBN TC2000, the �nalsorted data array is in shared memory.During the timings, no other processes or users contended for the processors, except forthe LAN results, which were run with a minimal amount of contention from other processes.Figures 2, 3, 4 and 5 show the speedups PSRS achieves on the BBN TC2000, iPSC/2-386,iPSC/860 and a LAN of workstations respectively. The keys are randomly generated anduniformly distributed. Tables 1, 2, 3 and 4 show the corresponding real execution times.Note that the number of processors available varies between the machines.The BBN TC2000 speedups in Figure 2 reinforce the positive conclusions from previousexperiments with the Myrias SPS-2 [16]. 13



Sorting TimesSizes (in seconds)1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs100,000 1.29 1.04 0.54 0.28 0.17 0.16 -200,000 2.71 2.22 1.12 0.60 0.32 0.24 -400,000 5.81 4.56 2.36 1.22 0.65 0.41 -800,000 15.97 9.49 4.85 2.51 1.31 0.75 0.751,000,000 22.15 - 6.15 3.16 1.66 0.93 0.852,000,000 46.52 - - - 3.41 1.83 1.324,000,000 97.49 - - - - 3.68 2.318,000,000 203.86 - - - - 7.47 4.29Table 1: Sorting times for BBN TC2000, uniform distribution
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Figure 2: Speedups for BBN TC2000, uniform distribution
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Sorting TimesSizes (in seconds)1PE 2PEs 4PEs 8PEs 16PEs 32PEs100,000 8.43 4.67 2.28 1.26 0.66 0.49200,000 17.82 9.81 4.81 2.61 1.31 0.84400,000 37.86 20.60 10.08 5.44 2.69 1.56800,000 79.63 43.20 21.13 11.36 5.56 3.081,000,000 101.17 - 26.82 14.37 7.04 3.882,000,000 212.50 - - - - 7.884,000,000 445.30 - - - - 16.20Table 2: Sorting times for iPSC/2-386, uniform distribution
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Figure 3: Speedups for iPSC/2-386, uniform distribution
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Sorting TimesSizes (in seconds)1PE 4PEs 16PEs 64PEs100,000 0.75 0.26 0.10 0.11200,000 1.59 0.55 0.18 0.15400,000 3.33 1.13 0.37 0.20800,000 7.05 2.45 0.71 0.311,000,000 8.95 3.02 0.90 0.372,000,000 18.80 - 1.71 0.634,000,000 39.40 - - 1.198,000,000 82.40 - - 2.46Table 3: Sorting times for iPSC/860, uniform distribution
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Figure 4: Speedups for iPSC/860, uniform distribution
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Sorting TimesSizes (in seconds)1PE 2PEs 4PEs 8PEs 16PEs100,000 4.73 3.11 1.36 1.13 0.81200,000 10.02 6.59 4.10 1.91 1.57400,000 21.18 10.85 8.11 4.87 3.28800,000 44.63 26.88 14.74 10.47 6.331,000,000 56.70 36.52 20.60 15.19 8.692,000,000 119.09 - 39.88 32.68 22.134,000,000 249.56 - - 84.36 50.93Table 4. Sorting times for LAN, uniform distribution
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Figure 5: Speedups for LAN, uniform distribution17



The notion of granularity, the amount of computation between communication andsynchronization points, is important to all forms of MIMD programming. Since sequentialprocesses do not need to communicate or synchronize, granularity is one measure of the ratiobetween useful computation and the overheads of parallelism. The e�ect of granularity onPSRS for the TC2000 can be seen in the relationship between the number of processors andthe size of the sorting problem.For a �xed number of processors, increasing the problem size increases the speedupe�ciency. When using 64 processors, the speedup curve grows closer to linear as the problemsize is incrementally increased from 800,000 integers to 8,000,000 integers. For 8,000,000integers, a maximum speedup of 47.5 is observed for 64 processors. For a �xed problem size,adding more processors to the solution results in diminishing speedup returns. For 800,000integers, the speedup remains at 16 whether using 32 processors or 64 processors. Obviously,larger data sets more e�ectively o�set the overheads of the algorithm and of the machinethrough higher granularity. Most importantly, there appears to be no inherent limit on thespeedup for the PSRS algorithm. As long as the problem size is of su�cient granularity,PSRS can e�ciently use an arbitrary number of processors.The notion of \su�cient granularity" is di�cult to quantify and to gain agreement on.It is clear, however, that it is only of theoretical interest because the size of many problemscannot or should not be increased simply to take better advantage of additional processors.In practice, there is usually a speci�c problem size that must be solved. If PSRS, or anotheralgorithm, cannot perform well on that particular problem size, then parallelism is of littleuse. The issue of improving speedup performance for a �xed problem size will be addressedlater on.It should be noted that a 
at speedup curve for a problem size does not necessarilyindicate poor performance. In particular, the speedup curve between 32 and 64 processorswhile sorting 800,000 integers on the TC2000 is 
at, but the real time is already a low 0.75seconds. This compares with a sequential sorting time of 15.97 seconds for the same problemsize. It is unrealistic to expect a parallel algorithm to reduce real running times to arbitrarilyclose to zero as additional processors are added.Overall, the iPSC/2-386 speedups are better than the TC2000, achieving a peakspeedup of 27.49 on 32 processors while sorting 4,000,000 items. Using speedup e�ciency asa measure of performance, this represents our best data point, with each processor spend-ing 27:4932 = 86% of its time doing useful work. PSRS was not tested on a larger dimensioniPSC/2-386 because one was not available at the time.The Intel hypercube has dedicated nearest neighbor communication connections. Thespecial communication links of the hypercube allow for fast data transfer between manydi�erent processors and with di�erent communication patterns. It is interesting to note thatthe more sophisticated pattern of communication in Phase 3, as described in [15, 16], was notimplemented. Instead of explicitly scheduling and synchronizing the messages so as to takeadvantage of the dedicated hypercube links, the implementation simply iterated through allthe node numbers in Phase 3. Apparently, the performance loss from ignoring the hypercubelinks is not large enough to spoil the speedups of our implementations.For problems of large granularity, the speedup e�ciency of the TC2000 and the iPSC/2-386 are similar. It is on the lower granularity experiments that the hypercube is clearlymore e�cient than the TC2000. The smaller the dimension of the hypercube, the larger18



the fraction of processors that can be reached by nearest neighbour links5. Since a nearestneighbour link is an one-stage, direct channel between hypercube nodes, it results in thefastest possible communication. Consequently, the average cost of communicating one byteis lower when the dimension of the hypercube is lower. On the TC2000, the number ofstages in the network from processor to nonlocal memory is constant for the size of the fullmachine and does not vary as the number of processors in the experiment varies. Thus, whilethe communication overhead of the hypercube is lower for small numbers of processors, thecommunication overhead for the TC2000 remains constant. This may explain the betterspeedup e�ciency of the hypercube for small numbers of processors.The iPSC/860 speedups are lower than the iPSC/2-386's, achieving a maximum of33-fold for 64 processors while sorting 8,000,000 items. However, a single i860 processoris roughly an order of magnitude faster than a single 80386, using the real time to sort1,000,000 random integers as a guideline. A faster i860 processor implies that for a �xedhypercube and problem size, the granularity of the problem is less on the iPSC/860 than onthe iPSC/2-386. Therefore, the 386-based hypercube achieves better speedup e�ciency, butthe i860-based hypercube achieves faster real times.Compared to the other results, the performance of sorting on a network of workstationsis markedly lower. Figure 5 shows a peak speedup of 7.1, while sorting 800,000 data itemson 16 machines. Although this sounds like a poor result, it is important to keep in mindthe implementation caveats mentioned previously, and the fact that communication over aLAN is expensive. The �gure also illustrates that bigger data sets do not necessarily achievebetter performance. In this case, the apparent anomaly is explained by the synchronizationadded to Phase 3. Bigger data sets require that they be broken down into more 52K bytepieces, introducing more performance loss due to synchronization overheads.4.4 Load Balancing and RDFAsOne of the strengths of the PSRS algorithm is the claim of good load balancing. RDFA isa measure of how evenly a load is balanced among processors during the merge in Phase4 [15, 16]. It stands for Relative Deviation of the size of the largest partition F rom theAverage size of the p partitions, and is de�ned as:RDFA = mn=p = m� pnwhere m is the maximum number of keys merged by any processor in Phase 4, n is the totalnumber of elements to sort, and p is the number of processors. Perfect load balancing willresult in a RDFA of 1.0, and the RDFA will always be greater than or equal to 1.0 sincem � np . If there are no duplicates in the data, Theorem 1 guarantees that the RDFA will beless than 2.0. If there are duplicates, the upper bound on the RDFA increases linearly withrespect to the number of duplicates for the key with the most duplicates. Duplicates increasethe upper bound on RDFA linearly and will cause only a minor performance degradation,unless a key is duplicated O(np ) times.Table 5 shows the set of RDFAs for the data used in the experiments. All the RDFAsare remarkably close to the optimal value of 1. In fact, the worst RDFA (1.075) is within5For 4 processors, the hypercube is of dimension 2 and 1/2 of the processors are nearest neighbours toany other. For 32 processors, the hypercube is of dimension 5 and only 5/32 of the processors are nearestneighbours to any other. 19



RDFAsSizes 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs100,000 1.002 1.004 1.015 1.038 1.075 -200,000 1.001 1.004 1.008 1.021 1.069 -400,000 1.001 1.003 1.006 1.019 1.045 -800,000 1.001 1.001 1.006 1.011 1.024 1.0611,000,000 - 1.002 1.005 1.012 1.018 1.0442,000,000 - - - 1.006 1.016 1.0304,000,000 - - - - 1.011 1.0258,000,000 - - - - 1.008 1.016Table 5. RDFAs for uniform distribution7.5% of optimum. Clearly, regular sampling does an excellent job of dividing the work ofthe parallel merge equally, given an uniformly distributed data set.4.5 Algorithmic Bottleneck AnalysisThe speedups achieved on the TC2000, iPSC/2-386 and iPSC/860 all improve if the problemsize increases and the number of processors is held constant. Likewise, when both theproblem size and the number of processors are increased, the speedups also increase. This isexpected, since an increase in the granularity of work given to each processor better o�setsthe system's and algorithm's overheads. However, in this section, the algorithm is analyzedto identify bottlenecks that limit the ability to extrapolate the results to larger numbers ofprocessors. In particular, when the problem size is constant but the number of processorsincreases, the speedup curve eventually 
attens or a slowdown is observed. It has alreadybeen argued that it is unrealistic to expect any algorithm to arbitrarily approach zero realtime as processors are added. However, an attempt is made to ameliorate the impact ofreduced granularity.Figure 6 shows a timing analysis for a sort of 800,000 integers on the TC2000. Figure6a reproduces the speedup curve for the data size on the TC2000. Figure 6b shows howmuch absolute time was spent in Phases 1, 2 and 4 (there is no Phase 3 for the TC2000).As the number of processors increases, the number of elements each processor has to sort inPhase 1 and to merge in Phase 4 deceases (800;000p ). Hence, as shown in Figure 6b, the timespent in Phases 1 and 4 decreases as more processors are added.Unfortunately, as the number of processors increases, the amount of work to be donein Phase 2 also increases. Recall that Phase 2 mainly consists of communicating samples,sorting samples and communicating pivots. The number of samples is a function of thenumber of processors. The absolute time spent in Phase 2 increases marginally, as seen inFigure 6b. But Figure 6c clearly shows that Phase 2 begins to dominate the running timeof the algorithm in terms of its percentage of the real time. The cost of Phase 2 is shown toquickly grow from being less than 2% of the total cost with 16 processors, to 20% with 32processors and 40% with 64 processors. Not only does the decreasing np ratio contribute tolower problem granularity, but the increasing communication needs of Phase 2 adds to thesingle processor bottleneck. 20



Of course, the real times required for Phase 2 do not change when sorting largerproblems with a �xed number of processors, since the amount of work in Phase 2 onlydepends on p. However, because larger problems have larger Phases 1 and 4, the percentageof real time spent in Phase 2 is less, and the impact of the bottleneck is less pronounced. Infact, reexamining the speedup curve for this data size, it can be seen that the knee in Figure6a, where it tapers o� into a 
at line, coincides with the rapid growth of Phase 2's shareof the total time. Amdahl's Law predicts the diminishing returns through the addition ofprocessors to the same problem size.Figures 7 and 8 show the same timing analysis for the iPSC/2-386 and iPSC/860,respectively. With the iPSC/2-386, the individual processors are slower than those for theTC2000. Consequently, more real time is spent in Phases 1 and 4 for the same values ofn and p, reducing the impact of Phase 2. Similarly, the cost of communicating partitionsof data in Phase 3 is still not high enough to dominate the cost of Phases 1 and 4. Withthe iPSC/860, the faster processors reduce the granularity of Phases 1 and 4. In fact, thesingle largest phase for the iPSC/860, by percentage of real time, is Phase 3. It suggeststhat for the iPSC/860, the amount of computational power is not as evenly matched withcommunication power as on the TC2000 and the iPSC/2-386. Still, the Phase 2 percentagegrows quickly when the number of processors is doubled from 32 to 64.For completeness, the same timing analysis for the LAN of workstations implementationis included in Figure 9. It can be seen in Figure 9c that the percentage of real time spent inPhase 2 grows as more processors are added to the problem. But, due to the single bus and�xed bandwidth of the network, the cost of communicating partitions in Phase 3 is by far thelargest fraction of PSRS. In particular, the extra synchronization required in Phase 3 skewsthe results, causing this phase to dominate the execution time. Again, the computationalpower of the processing nodes (i.e. workstations) is unevenly matched with the cost ofcommunication. For situations where a network of workstations is the only available parallelcomputer, PSRS can still be e�ectively used when sorting large problems.The phase-by-phase analysis reveals the important balance between processing powerand communication costs. Because each of the MIMD machines has a di�erent communica-tion mechanism and strengths, the impact of the communication intensive Phase 3 is alsodi�erent. Phase 3 is a machine dependent aspect of our experiment. However, Phase 2 is analgorithmic bottleneck, independent of any particular MIMD machine. Faster processors orcheaper communications alone cannot completely solve the Phase 2 bottleneck.Two broad, and not fully satisfactory, approaches to dealing with the Phase 2 bottle-neck are o�ered. First, the sorting of the samples by the lone processor in Phase 2 can itselfbe parallelized. Because PSRS is best suited to sorting large numbers of keys, it is probablynot well suited for a parallel Phase 2. A di�erent parallel sorting algorithm, hyperquicksort[19] for example, may be better suited for sorting the small data sets of Phase 2. Similarly,the process of gathering the samples can be implemented as a parallel binary tree merge,but at the cost of additional message and synchronization overheads.Second, undersampling (when s < p) can be used to reduce the number of elementscommunicated and sorted in Phase 2. Undersampling lessens the impact of the Phase 2bottleneck, but does not solve the fundamental problem. Furthermore, the theoretical resultsof Section 3 predict that the upper bound on worst-case load balancing in Phase 4 growsrapidly as s becomes less than p. There is a clear tradeo� between a shorter Phase 2 and apotentially longer Phase 4 due to poorer load balancing.In one experiment, s was set to be 0:5�p, an undersampling factor of 0.5, and PSRS was21
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re-run on the TC2000 sorting 800,000 random integers using 64 processors. The percentageof real time of Phase 2 dropped from 47% (normal sampling) to 24% and the real time forPhase 2 dropped from 0.4s to 0.2s. However, the real time for the entire sort increasedfrom 0.75s with normal sampling to 0.83s with an undersampling factor of 0.5, because theRDFA increased from 1.061 to 1.930. Here, the tradeo� between Phase 2 and Phase 4 wasunsuccessful.In another experiment, using the nonuniform IMOX data described in the next section,sorting 800,000 integers using 64 processors on the TC2000 took 0.75s (RDFA of 1.202),with Phase 2 accounting for 0.35s (47%) of the time. When using an undersampling factorof 0.5, it took 0.67s (RDFA of 1.737), with Phase 2 accounting for 0.19s (28%) of the time.This is merely anecdotal evidence that undersampling can indeed be an e�ective technique.However, a more thorough study of the cost-bene�ts of undersampling are beyond the scopeof this paper.Finally, it should be pointed out that while Phase 2 may become a problem whenincreasing the number processors for a �xed problem size, for a given sorting problem witha �xed number of processors it may not be an issue.4.6 Experiments Using IMOX DataThe previous sections demonstrated that PSRS performs well on random data with an uni-form distribution. Most application-generated data, however, does not �t into this simplemodel. To further illustrate the versatility of PSRS, the algorithm has been tested on a non-random, nonuniform value distribution data set from a real application area. This sectionreports on the results obtained using the IMOX data set [2], used extensively in image pro-cessing and pattern recognition. A pattern matrix, derived from the Munson hand-printedFortran character set (available from the IEEE Computer Society), consists of 192 binary-coded (24 by 24) handwritten characters from several authors. Each digitized handwrittencharacter is either the letter `I', `M', `O', or `X', and is represented by an eight-dimensionalpattern. The feature numbers are the number of squares from the perimeter of the patternto the character.The Euclidean distance for each pair of patterns is calculated. In pattern recognitionand clustering analysis these distances need to be sorted, therefore the distance data is usedto test PSRS. There are (192 � 191)=2 = 18336 distance values. Examination of the datashows that the it has a bell-shaped distribution curve with most of the numbers clusteredaround the center of the scale. The data has many duplicates since over 60 values arerepeated. For example, one data value is repeated 161 items.The performance on this data set is in
uenced by both the high number of duplicatesand the nonuniform data. By removing the duplicates, we can see the direct e�ects of thedata distribution on performance. The 18336 numbers have been randomized by adding twomore lower-signi�cant digits, resulting in fewer duplicate items. Now there are less than60 values which are repeated 5 or more times, and no data item is duplicated more than 7times. The randomization does not change the bell shape of the value distribution curve.The 18336 values were copied and concatenated many times to form a su�ciently largeinput to PSRS. Of course, this concatenation process creates an extra duplicate each timethe original list is copied. These duplicates are not removed nor randomized any furtherbecause many application areas encounter a similar number of ties.26



RDFAsSizes 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs100,000 1.015 1.044 1.032 1.198 1.154 -200,000 1.012 1.008 1.031 1.044 1.190 -400,000 1.002 1.018 1.006 1.043 1.162 -800,000 1.000 1.001 1.007 1.009 1.075 1.2021,000,000 - 1.001 1.003 1.022 1.028 1.0892,000,000 - - - 1.005 1.024 1.0334,000,000 - - - - 1.011 1.0368,000,000 - - - - 1.009 1.012Table 6: RDFAs for IMOX data, BBN TC2000The RDFAs are presented in Table 6. There is considerably more variation in the RD-FAs with the IMOX data than with the random data. With 64 processors and 800,000 dataitems, a worst case RDFA of 1.202 was observed. Although these numbers are considerablyhigher than the uniformly distributed data value case, one should keep in mind that thisworst case is still within 20.2% of optimum, a respectable result.The larger RDFAs for the IMOX data set are due to the e�ect of a nonuniform datavalue distribution on pivot selection, and the duplicates present in the data. The pivotsselected from the regular sample are heuristic estimates of where to partition the locallysorted data blocks of each processor in order to evenly balance the work of the parallelmerge. As heuristics, the pivots are subject to error. In the case of uniformly distributeddata values, an error in pivot selection increases the RDFA a �xed amount no matter thelocation of the pivot in the distribution. In the case of the IMOX's nonuniformly distributeddata values, an error in pivot selection may increase the RDFA a great deal if the pivot fallswithin the peak of the bellcurve.Despite the adverse e�ects of the data distribution and the presence of duplicates,the performance of the regular sampling heuristic remains strong, further illustrating theversatility of the algorithm.5 ConclusionsIn the �eld of parallel processing, there are a diverse range of machine architectures. Nat-urally, the qualitative di�erences between architectures are exploited to achieve maximumperformance. Special architectures demand specialized algorithms, but an e�cient algorithmfor one class of machine may be inadequate for another class. Consequently, there are a va-riety of innovative parallel sorting algorithms already in the literature. PSRS is yet anotheraddition to this literature, with its share of weaknesses and strengths.Its main weakness is the sequential bottleneck of Phase 2, which grows worse as thenumber of processors increases. Although some solutions have been presented, the lack ofexperience with PSRS on large con�gurations of processors makes it impossible to properlyassess the problem and its solutions. Clearly, there is a tradeo� between the nature of Phase2 and Phase 4. Undersampling decreases the size of Phase 2, but results in signi�cantlypoorer load balancing in Phase 4. Oversampling increases the size of Phase 2, but improvesload balancing in Phase 4. More research is required.27



PSRS has signi�cant strengths:1. Load Balancing: The regular sampling heuristic of PSRS is remarkably e�ective, asshown by both theoretical and empirical analysis. Tight bounds on load balancing arederived and experiments show load balancing to be close to optimal in practice.2. Duplicates: Duplicate keys degrade the performance of load balancing heuristics thatinspect the data to estimate the distribution of values. Many parallel sorting algorithmsare a�ected by duplicates, but few researchers address the issue formally. PSRS isrelatively insensitive to the presence of duplicates. Speci�cally, it is proven that thebounds on load balancing change linearly as the number of duplicates increases.3. Granularity: Like all parallel algorithms, having a problem that o�ers su�cient gran-ularity is mandatory for high performance. PSRS does not achieve good speedups forsmall problems. Given n keys and p processors, np of the work per processor representsthe maximum possible granularity. PSRS' approach to the division of work betweenprocessors and its e�ective load balancing allows for the maximum possible granular-ity. Each processor sorts exactly np keys in Phase 1 and, given the near-optimal loadbalancing, each processor merges approximately np keys in Phase 4.A di�erent approach is the divide-and-conquer paradigm of some parallel sorting al-gorithms, as inspired by the recursively divisible geometric hypercube architecture.Basically, the original array of keys is recursively subdivided and then recreated insorted order. Notably, the granularity of work decreases during the subdivision andsome processors are idle various at times, introducing a bottleneck.The structure of PSRS, and other similar algorithms ([12, 7], for example), is charac-terized by a high degree of asynchronous computation and low data movement.Of the many advantages of the algorithm, perhaps the most important is its suitabilityfor a diverse collection of MIMD architecture classes. The same implementation of thealgorithm, modulo the calls to a machine's parallel programming constructs, will achievegood performance on di�erent memory con�gurations (shared and distributed) and di�erentcommunications interconnections (LAN, hypercube). While it may not be the best algorithmfor any particular architecture, PSRS is a good algorithm for a large class of existing MIMDmachines. It is easy to understand and it has excellent theoretical and empirical properties.Given its strengths, PSRS can also be expected to perform well on future MIMD machines.AcknowledgmentsThe �nancial support of the Canadian Natural Sciences and Engineering ResearchCouncil is appreciated, operating grants OGP 8153 and OGP 9198 and a summer scholarshipfor Paul Lu.The BBN TC2000 implementation was done using facilities provided by the MassivelyParallel Computing Initiative (MPCI) at Lawrence Livermore National Laboratory. Specialthanks to Brent Gorda at MPCI for valuable assistance throughout this research. TheiPSC/2-386 implementation was done using facilities provided by the Oregon AdvancedComputing Institute (OACIS). Thanks to Michael Young of OACIS for his assistance. Accessto the iPSC/860 was provided by the Numerical Aerodynamic Simulation (NAS) Division28
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