MAKEARRAYS(3) MAKEARRAYS(3)

NAME
makePolicyArray makeValueArray destroyPolicyArray destroy\alueArray — create and destrarrays to
hold QNET polig and value data

SYNOPSIS
#include <gnet.h>

int* makePolicyArray(int ndim, int nsrv, int truncf]);
void destroyPolicyArray(void* p, int ndim, int nsrv, int trunc[]);

double* makeValueArray(int ndim, int nval, int trunc[]);
void destroyValueArray(void* p, int ndim, int nval, int trunc[]);

DESCRIPTION
These functions create and degtroultidimensional arrays used to hold pgliand value data for QNET
programs. Thehandle the necessary a@nsion between QNET dimension e@ntions and C/C++ array
corventions.

The functionmakePolicyArray() allocates memory for andim-dimensional polig array that has action
information fornsrv seners. Thetruncation values for each queue areegiby the arraytrunc[]. The
functiondestroyPolicyArray() frees memory pointed to kyy previously obtained bynakePolicyArray().

The functionmakeValueArray() allocates memory for amdim-dimensional array to hold differential cost
value data withnval different \alues at each location in the state space. The truncation values for each
gueue are gen by the arraytrunc[]. The functiondestroyValueArray() frees memory pointed to by
previously obtained bynakeValueArray().

DISCUSSION
The state of a QNET program is determined by the number of jobs in each of the classes (or queues) used
by the program.The state space is anndim-dimensional space that is in@de by the number of jobs in
each classFor example, if there are tavdasses and the first class has 5 jobs and the second class has 2
jobs then the ordered pair (5,2) completely specifies a state. In this case the state spadienisrtsional
and the value ofidim would be 2.

Each state has attion associated with it that indicates which classes each of thersemwill work on. A
policy is the entire collection of actions for all stat§his means that a poljicontains the complete infor
mation about which class each server servesvigy gossible state of the systefRor example, in a sys-

tem with three classes andawerwers the action for state (3,2,5) might be (1,3) which indicates that the
first server works on class 1 while the secondeseworks on class 3. This means that poliata is
indexed by gate and a multidimensional array is the appropriate structure to hold this information.

As QNET programs run tigecompute differential cost data. Each state in the system has one ocastore
values associated with it and this data is stored in a multidimensional arragethbe date, just as the pol-
icy data is.

In C++ array indices start with 0 and so a 5-element array has indices 0 throiifjie 4owention in

QNET programs is to describe the state space by the largest values each class, cahidiain turns

means the lgest ind& that can be used. This means that QNET state space descritresh¢ation val-

ues of 30, 30, and 30 is three-dimensional with indices in each dimension having values of 0 through 30
inclusive. The C++ array to hold this data should be 31 by 31 by 31.

If there is more than one senthen there will be more than one action for each state and so one additional
array dimension in the poliarray is required.Similarly, if there is more than one cost value per state then
an additional array dimension in thalwe array is required. While the functions described here can handle
this, the user should cast pointers returnechblgePolicyArray() andmakeValueArray() appropriately.

RETURN VALUE
The allocation functions each return a pointer that must be cast to a pointer of approiafe nelirec-
tion (dimension). In the case of pglidata the lgel of indirection should badim if the number of seers
nsrv=1 but should be increased by onensfv>1. Similarly in the case of cost value data theeleof

MAKEARRAYS(3) MAKEARRAYS(3)

indirection should bandim if nval=1 but should bedim+1 if nval>1. Thedeallocation functions do not
return ay value.

EXAMPLE
Suppose a model has three classes anddwers and that the truncatioalues for the classes are 10, 20,
and 20. Fdlowing the QNET covention that N[0] is not used (so N[1] is the truncation value for the first
dimension), polig and value arrays for this situation can be allocated with

int N[] = {0, 10, 20, 20},
int**** action = (int****) makePolicyArray(3, 2, &N[1]);
double*** h = (double***) makeValueArray(3, 1, &N[1]);

Now consider the state x1=5, x2=2, x3=8 (the three queues eeelb#3 and 8 jobs in them respeetly).
After these declarations, action[5][2][8] is a two-element array that can hold thg gale for the state
(5,2,8); action[5][2][8][0] is the location for the first sers action and action[5][2][8][1] is the location
for the second seev's action. Noticethat the references action[10][20][20][0] and action[10][20][20][1]
are both wlid. Thedifferential cost alue data can be stored in the array h; the value data foxdhepke
state can be referenced with h[5][2][8].

The memory allocated for the pgliend value arrays can be returned to the system with the commands

destroyPolicyArray(action, 3, 2, &N[1]);
destroyValueArray(h, 3, 1, &N[1]);

AUTHOR
Copyright © 2007 Jonathan R. Senning, Department of Mathematics and Computer Science, Gordon Col-
lege, 255 Grapevine Road, Wenham MA, 01984.

