Multilndex(3) QNETProgrammes Manual Multilnde(3)

NAME

Class Multilndet — Allows an arbitrary number of nestéat-loops to be implemented with a single loop.

SYNOPSIS

#include <Multil ndex.h>

Multilndex(int dim, int* start, int* end, int* stride);
Multilndex(int dim, int* start, int* end);
Multilndex(int dim, int* end);
Multilndex(int dim, int start, int end, int stride);
Multilndex(int dim, int start, int end);
Multilndex(int dim, int end);
Multilndex(const Multilndex& Xx);

void resetBounds();

void resetFor Next();

void resetFor Next(int leastSignificantindex
int start();

int start(int leastSignificantindex

int next();

int next(int leastSignificantindex

int prev();

int prev(int leastSignificantindeéx

bool inRange();

int getOffset();

int getOffset(int leastSignificantindex
int getOffset(int* indeX);

int getDelta(int* del);

int* getCounter Array();

int* getCounter Array(int bias);

int* getCounter Start();

int* getCounter Start(int bias);

int* getCounter End();

int* getCounter End(int bias);

int* getCounter Stride();

int* getCounter Stride(int bias);

int getCounterValue(int i);

int getCounter Dim();

int getCounter Extent();

std::string toString();

std::string toString(std::string sep;

DESCRIPTION

Provides an easy interface use a sirfgleloop to do the work of arbitrarily deeply nesfed-loops. Often
such nested loop constructs are used toxiadeultidimensional array This class allows a single contigu-
ous block of memory (i.e. a single dimensional array) to be treated as if it is a multidimensional array.

There are seeral different forms of the constructoEach takes the gumentdim which is the size of the
counter array (i.e. the number of loops being represented). hmantsstart, end and stride can either
be integers or pointers to arrays of integers (each contalirimgntries) that represent the starting, ending,
and stride values for each of the countdugs. Ifstrideis not supplied then it is assumed to bdflstart

is not supplied then it is assumed to be 0. Please note thag theliksual covention in C++ looping con-
structs, the counter values are increased @pmddnclusive.

Perhaps the most common use of bheltilndex class is to iteratever a multidimensional array whose
dimensions are not known until runtime. This is handled using a single dimensional array to hold the mul-
tidimensional data and mapping the multidimensional counter location to a sifsglefadm the start of
the array The offset value can be accessed throughgeh@ffset() method. Without an argument, this

Multilndex 1.4 2009-06-12 1

Multilndex(3) QNETProgrammes Manual Multilnde(3)

method returns the f3kt is to the location corresponding to the current counter location. If the argument is
an integer array then thefgdét is to the location specified by the arrdysingle nonngative integer agu-

ment specifies the least significant countdu& to use when computing thdsett. Itis important to note

that offsets are rela o the zeroth element of an arrayen if the starting alues supplied to the construc-

tor are not zero.

The start() method resets all counter values from the most significant (leftmost) to the least significant
(rightmost) to their startingalues and returns the correspondingetf Themethodnext() increments the
counter to its next value and returns thev df set. Theoptional intger argument indicates the least sig-
nificant counter &lue to increment; if not supplied it is assumed to be zero, indicating the rightmost counter
value. Theincrement is done by adding the stride to the specified locafidhis results in a value that is

larger than the corresponding ending value then value is reset to the starting value and a "cary" is per
formed to the next counter value on the Iefhe prev() method verks like next() but decrements the
counter rather that incrementing it.

As an alternatie o start(), one can initialize (or reset) a counter usingrigsetFor Next() method. This
initializes the counter values so that the first cahaxt() will increment the counter to its initial location
and return the corresponding offset.

The boolean methothRange() returnstrue if the current counter values are all between (inek)she
starting and ending values supplied to the construotberwisefalse is returned. The resetBounds()
method can be used to change the starting, ending and stride values for each counter value.

Often one needs to compute the offset from the current counter location to a location specifiedtdy a
an array of posiie, zero, or ngdive values that are added to the current courdéres. Thids done by
thegetDelta() method.

Access to the counter values as an array is provided bget@eunter Array() method which returns a
pointer to the counter arrayrhe optional ajumentbiascan be used to "shift" the pointer so that the array
can be indeed from a number other than zerBor example, ifbias= 1 and the return value of thget-
CounterArray() method isx, thenx[1] will contain the most significant (leftmost) countexlue while
accessing[0] should be considered an errdthe methodgetCounter Start(), getCounter End(), andget-
Counter Stride() provide similar access to the current start, end, and s@des: Warning: Since these
methods return pointers to the internal counter arrays, changing values in these arraysnsEnpteaded
conseguences.

The methodyetCounter Dim() returns the number of counters, wigktCounter Extent() returns the total
number of values the counter will iterateeo The methodoString() returns a space-delimited string rep-
resentation of the counter; the delimiter can be changed by supplying the desired delimitegasantar
to the method.

EXAMPLES
Consider the triply nestedr-loop

for (int b0 = 0; b0 < 2; bO++)

{
for (int bl = 0; bl < 2; bl++)
{
for (int b2 = 0; b2 < 2; b2++)
{
cout << b0 << bl << b2 << endl
}
}
}

which counts in binary from 000 to 111. This can be implemented udihgtal ndex loop as

Mul tilndex xcnt(3, 0, 1);
int* x = xcnt.getCounterArray();

Multilndex 1.4 2009-06-12 2

Multilndex(3) QNETProgrammes Manual Multilnde(3)

for (xcnt.start(); xcnt.inRange(); xcnt.next())

{
}

cout << b[0] << b[1] << b[2] << end!;

Notice that all three counter values start at 0 and are increased up to ¥énclusi

In some cases it may be desirable teehtae counter array inded from some number other than This
is frequently done in mathematical code that works with counters subscripted from 1. The loop

Mul tilndex xcnt(3, 0, 1);
int* x = xcnt.getCounterArray(1);
for (xcnt.start(); xcnt.inRange(); xcnt.next())

{
}

cout << b[1] << b[2] << b[3] << endl;

will produce the same output as the previous loop but uses indices starting with 1.

For a more general example, consider the quadruply ndsteldop with different bounds for each loop
that accesses a portion of the a four-dimensional array:

doubl e a[10][10][5][5];

int x[4];

for (x[0] = 0; x[0] <= 10; x[0] += 1)
for (x[1] = 2; x[1] <= 10; x[1] += 2)

for (x[2] =0; x[2] <= 1; x[2] +=1)

{
for (x[3] =1; x[3] <=1; x[3] +=1)
/1 statenents accessing x[0], x[1], x[2], and x[3]
/1 or accessing a[x[O]]1[x[2]11[x[2]]1[x[3]]
}
}

}

This can easily be implemented alslaltil ndex loop with

doubl e a[10][10][5][5];

double* A = &[0][0][0][0O];

int mn[4] {0 2 0,1},

int max[4] {10, 10, 1, 1};

int stride[4] {1, 2, 1, 1};

Mul tilndex xcnt(4, min, max, stride);

int* x = xcnt.getCounterArray();

for (int X = xcnt.start(); xcnt.inRange(); X = xcnt.next())

{

/1 statenents accessing x[0], x[1], x[2], and x[3]
/1 or accessing Al X

}

To improve dficieng it helpful to reduce the number of callsrtext() by spitting the single loop into tw
loops; an outer loopver al but rightmost dimension and an inner loogercthe rightmost dimensionThis

Multilndex 1.4 2009-06-12 3

Multilndex(3) QNETProgrammes Manual Multilnde(3)

requires a little more work but can greatly impFqerformance while still allowing general code when at
two or more dimensions are needed.

doubl e a[10][10][10][20];

double* A = &[0][0][0][0O];

int mn[4] {0 0, 0, O0};

i nt max[4] {10, 10, 10, 20};

int stride[4] {1, 1, 1, 1};

Mul til ndex xcnt(4, min, max, stride);

int* x = xcnt.getCounterArray();

int* str xcnt. getCounterStart();// same as mn[]

int* end = xcnt.getCounterEnd(); // same as max[]

int len = end[3] - start[3]; // could also use nax[3]-mn[3] or 20
for (int X0 = xcnt.start(); xcnt.inRange(); X0 = xcnt.next(1))

{
for (int X = X0; X <= X0 + len; X++)
{
x[3] = X - XO; // set rightnost counter val ue
/1 statenents accessing x[0], x[1], x[2], and x[3]
/1 or accessing Al X]
}
}

AUTHOR
The idea for this class came from code written by Nathalke#/in 2007. The initial C++ class based on
this idea was written by Christopher Pfohl in 2008 The class described &gienplemented by Jonathan
Senning in 2009 and this manual page was adapted from one written by Christopher Pfohl.

Copyright © 2009 Department of Mathematics and Computer Science, Gordomge&;dlg5 Grapgne
Road, Wenham MA, 01984

Multilndex 1.4 2009-06-12 4

