
DYNARRAY(3) QNETProgrammer’s Manual DYNARRAY(3)

NAME
allocateArray, allocateArrayV, deallocateArray, deallocateArrayV − create and destroy arrays with an arbi-
trary number of dimensions

SYNOPSIS
#include <dynArray.h>

void* allocateArray(int datasize, int ndim,...);
void* allocateArrayV(int datasize, int ndim, int dim[]);
void deallocateArray(void* ptr, int ndim,...);
void deallocateArrayV(void* ptr, int ndim, int dim[]);

DESCRIPTION
These functions create and destroy multidimensional arrays whose dimensions are not known until runtime
so that can be passed as arguments to functions without the dimensions being known at compile time.

The functionsallocateArray() andallocateArrayV () each allocate memory for an array with elements that
requiredatasize bytes and have ndim dimensions. Thecalling program is required to cast the return value
to the appropriate pointer. deallocateArray() anddeallocateArrayV() free memory pointed to byptr that
was previously obtained byallocateArray() or allocateArrayV ().

The functionsallocateArray() and deallocateArray() each require a total ofndim+2 arguments where
ndim is the number of dimensions of the array. The lastndim arguments are the actual dimension values.
Alternatively, the last argument ofallocateArrayV () anddeallocateArrayV() is anndim element vector
(1-D array) that contains the array dimension values.

The memory allocated for the data portion of the array is allocated at one time and so will be contiguous.
This means that offsets to "slices" in the array are possible, just as if the array had been statically allocated.

The value ofdatasize must be the size in bytes of the basic datatype of the array. Calling programs may
use thesizeof() operator or constants that are predefined in dynArray.h: SZbool, SZchar, SZshort, SZint,
SZlong, SZuchar, SZushort, SZuint, SZulong, SZfloat, SZdouble, andSZldouble.

RETURN VALUE
The allocation functions each return a pointer that must be cast to a pointer of appropriate type and level of
indirection (dimension). The deallocation functions do not return any value.

EXAMPLE
A 10 by 15 two-dimensional array of integers could be allocated with

int** a = (int**) allocateArray(SZint, 2, 10, 15);
or

int dim[2] = {10, 15};
int** a = (int**) allocateArrayV(SZint, 2, dim);

In both cases the return value from the function has been cast to a pointer to a two-dimensional array of
integers. Theresulting array can be accessed as if it had been declared as

int a[10][15];

but it can also be passed to and used by functions without knowing its dimensions at compile-time.A
three-dimensional array of floating point numbers with dimensions 8, 5, and 13 can be allocated with

float*** b = (float***) allocateArray(SZfloat, 3, 8, 5, 13);
or

int dim[3] = {8, 5, 13};
float*** b = (float***) allocateArrayV(SZfloat, 3, dim);

Elements in the array can be accessed with references like b[0][2][5]. Dynamic array memory is be

QNET 1.0 2008-11-11 1

DYNARRAY(3) QNETProgrammer’s Manual DYNARRAY(3)

released with commands such as

deallocateArray(a, 2, 10, 15);
and

int dim[3] = {8, 5, 13};
deallocateArrayV(b, 3, dim);

Notice that the same dimensions used to allocate the array must be used when it is deallocated.

AUTHOR
Copyright © 2007,2008 Jonathan R. Senning, Department of Mathematics and Computer Science, Gordon
College, 255 Grapevine Road, Wenham MA, 01984.

QNET 1.0 2008-11-11 2

