
MultiIndex(3) QNETProgrammer’s Manual MultiIndex(3)

NAME
Class MultiIndex − Allows an arbitrary number of nestedfor-loops to be implemented with a single loop.

SYNOPSIS
#include <MultiIndex.h>

MultiIndex(int dim, int* start, int* end, int* stride);
MultiIndex(int dim, int* start, int* end);
MultiIndex(int dim, int* end);
MultiIndex(int dim, int start, int end, int stride);
MultiIndex(int dim, int start, int end);
MultiIndex(int dim, int end);
MultiIndex(const MultiIndex& x);
void resetBounds();
void resetForNext();
void resetForNext(int leastSignificantIndex);
int start();
int start(int leastSignificantIndex);
int next();
int next(int leastSignificantIndex);
int prev();
int prev(int leastSignificantIndex);
bool inRange();
int getOffset();
int getOffset(int leastSignificantIndex);
int getOffset(int* index);
int getDelta(int* del);
int* getCounterArray();
int* getCounterArray(int bias);
int* getCounterStart();
int* getCounterStart(int bias);
int* getCounterEnd();
int* getCounterEnd(int bias);
int* getCounterStride();
int* getCounterStride(int bias);
int getCounterValue(int i);
int getCounterDim();
int getCounterExtent();
std::string toString();
std::string toString(std::string sep);

DESCRIPTION
Provides an easy interface use a singlefor-loop to do the work of arbitrarily deeply nestedfor-loops. Often
such nested loop constructs are used to index a multidimensional array. This class allows a single contigu-
ous block of memory (i.e. a single dimensional array) to be treated as if it is a multidimensional array.

There are several different forms of the constructor. Each takes the argumentdim which is the size of the
counter array (i.e. the number of loops being represented). The argumentsstart, end, and stridecan either
be integers or pointers to arrays of integers (each containingdim entries) that represent the starting, ending,
and stride values for each of the counter values. Ifstride is not supplied then it is assumed to be 1.If start
is not supplied then it is assumed to be 0. Please note that, unlike the usual convention in C++ looping con-
structs, the counter values are increased up toendinclusive.

Perhaps the most common use of theMultiIndex class is to iterate over a multidimensional array whose
dimensions are not known until runtime. This is handled using a single dimensional array to hold the mul-
tidimensional data and mapping the multidimensional counter location to a single offset from the start of
the array. The offset value can be accessed through thegetOffset() method. Without an argument, this

MultiIndex 1.4 2009-06-12 1

MultiIndex(3) QNETProgrammer’s Manual MultiIndex(3)

method returns the offset is to the location corresponding to the current counter location. If the argument is
an integer array then the offset is to the location specified by the array. A single nonnegative integer argu-
ment specifies the least significant counter value to use when computing the offset. It is important to note
that offsets are relative to the zeroth element of an array, even if the starting values supplied to the construc-
tor are not zero.

The start() method resets all counter values from the most significant (leftmost) to the least significant
(rightmost) to their starting values and returns the corresponding offset. Themethodnext() increments the
counter to its next value and returns the new offset. Theoptional integer argument indicates the least sig-
nificant counter value to increment; if not supplied it is assumed to be zero, indicating the rightmost counter
value. Theincrement is done by adding the stride to the specified location.If this results in a value that is
larger than the corresponding ending value then value is reset to the starting value and a "carry" is per-
formed to the next counter value on the left.The prev() method works like next() but decrements the
counter rather that incrementing it.

As an alternative to start(), one can initialize (or reset) a counter using theresetForNext() method. This
initializes the counter values so that the first call tonext() will increment the counter to its initial location
and return the corresponding offset.

The boolean methodinRange() returnstrue if the current counter values are all between (inclusive) the
starting and ending values supplied to the constructor, otherwise false is returned. The resetBounds()
method can be used to change the starting, ending and stride values for each counter value.

Often one needs to compute the offset from the current counter location to a location specified by adelta,
an array of positive, zero, or negative values that are added to the current counter values. Thisis done by
thegetDelta() method.

Access to the counter values as an array is provided by thegetCounterArray() method which returns a
pointer to the counter array. The optional argumentbiascan be used to "shift" the pointer so that the array
can be indexed from a number other than zero.For example, ifbias = 1 and the return value of theget-
CounterArray() method isx, then x[1] will contain the most significant (leftmost) counter value while
accessingx[0] should be considered an error. The methodsgetCounterStart(), getCounterEnd(), andget-
CounterStride() provide similar access to the current start, end, and stride values. Warning: Since these
methods return pointers to the internal counter arrays, changing values in these arrays may have unintended
consequences.

The methodgetCounterDim() returns the number of counters, whilegetCounterExtent() returns the total
number of values the counter will iterate over. The methodtoString() returns a space-delimited string rep-
resentation of the counter; the delimiter can be changed by supplying the desired delimiter as an argument
to the method.

EXAMPLES
Consider the triply nestedfor-loop

for (int b0 = 0; b0 < 2; b0++)
{

for (int b1 = 0; b1 < 2; b1++)
{

for (int b2 = 0; b2 < 2; b2++)
{

cout << b0 << b1 << b2 << endl;
}

}
}

which counts in binary from 000 to 111. This can be implemented using aMultiIndex loop as

MultiIndex xcnt(3, 0, 1);
int* x = xcnt.getCounterArray();

MultiIndex 1.4 2009-06-12 2

MultiIndex(3) QNETProgrammer’s Manual MultiIndex(3)

for (xcnt.start(); xcnt.inRange(); xcnt.next())
{

cout << b[0] << b[1] << b[2] << endl;
}

Notice that all three counter values start at 0 and are increased up to 1 inclusive.

In some cases it may be desirable to have the counter array indexed from some number other than 0.This
is frequently done in mathematical code that works with counters subscripted from 1. The loop

MultiIndex xcnt(3, 0, 1);
int* x = xcnt.getCounterArray(1);
for (xcnt.start(); xcnt.inRange(); xcnt.next())
{

cout << b[1] << b[2] << b[3] << endl;
}

will produce the same output as the previous loop but uses indices starting with 1.

For a more general example, consider the quadruply nestedfor-loop with different bounds for each loop
that accesses a portion of the a four-dimensional array:

double a[10][10][5][5];
int x[4];
for (x[0] = 0; x[0] <= 10; x[0] += 1)
{

for (x[1] = 2; x[1] <= 10; x[1] += 2)
{

for (x[2] = 0; x[2] <= 1; x[2] += 1)
{

for (x[3] = 1; x[3] <= 1; x[3] += 1)
{

// statements accessing x[0], x[1], x[2], and x[3]
// or accessing a[x[0]][x[1]][x[2]][x[3]]

}
}

}
}

This can easily be implemented as aMultiIndex loop with

double a[10][10][5][5];
double* A = &a[0][0][0][0];
int min[4] = { 0, 2, 0 ,1};
int max[4] = {10, 10, 1, 1};
int stride[4] = { 1, 2, 1, 1};
MultiIndex xcnt(4, min, max, stride);
int* x = xcnt.getCounterArray();
for (int X = xcnt.start(); xcnt.inRange(); X = xcnt.next())
{

// statements accessing x[0], x[1], x[2], and x[3]
// or accessing A[X]

}

To improve efficiency it helpful to reduce the number of calls tonext() by spitting the single loop into two
loops; an outer loop over all but rightmost dimension and an inner loop over the rightmost dimension.This

MultiIndex 1.4 2009-06-12 3

MultiIndex(3) QNETProgrammer’s Manual MultiIndex(3)

requires a little more work but can greatly improve performance while still allowing general code when at
two or more dimensions are needed.

double a[10][10][10][20];
double* A = &a[0][0][0][0];
int min[4] = { 0, 0, 0, 0};
int max[4] = {10, 10, 10, 20};
int stride[4] = { 1, 1, 1, 1};
MultiIndex xcnt(4, min, max, stride);
int* x = xcnt.getCounterArray();
int* str = xcnt.getCounterStart();// same as min[]
int* end = xcnt.getCounterEnd(); // same as max[]
int len = end[3] - start[3]; // could also use max[3]-min[3] or 20
for (int X0 = xcnt.start(); xcnt.inRange(); X0 = xcnt.next(1))
{

for (int X = X0; X <= X0 + len; X++)
{

x[3] = X - X0; // set rightmost counter value
// statements accessing x[0], x[1], x[2], and x[3]
// or accessing A[X]

}
}

AUTHOR
The idea for this class came from code written by Nathan Walker in 2007.The initial C++ class based on
this idea was written by Christopher Pfohl in 2008 The class described here was implemented by Jonathan
Senning in 2009 and this manual page was adapted from one written by Christopher Pfohl.

Copyright © 2009 Department of Mathematics and Computer Science, Gordon College, 255 Grapevine
Road, Wenham MA, 01984

MultiIndex 1.4 2009-06-12 4

