
MAKEARRAYS(3) MAKEARRAYS(3)

NAME
makePolicyArray, makeValueArray, destroyPolicyArray, destroyValueArray − create and destroy arrays to
hold QNET policy and value data

SYNOPSIS
#include <qnet.h>

int* makePolicyArray(int ndim, int nsrv, int trunc[]);
void destroyPolicyArray(void* p, int ndim, int nsrv, int trunc[]);

double* makeValueArray(int ndim, int nval, int trunc[]);
void destroyValueArray(void* p, int ndim, int nval, int trunc[]);

DESCRIPTION
These functions create and destroy multidimensional arrays used to hold policy and value data for QNET
programs. They handle the necessary conversion between QNET dimension conventions and C/C++ array
conventions.

The functionmakePolicyArray() allocates memory for anndim-dimensional policy array that has action
information for nsrv servers. Thetruncation values for each queue are given by the arraytrunc[]. The
functiondestroyPolicyArray() frees memory pointed to byp previously obtained bymakePolicyArray().

The functionmakeValueArray() allocates memory for anndim-dimensional array to hold differential cost
value data withnval different values at each location in the state space. The truncation values for each
queue are given by the arraytrunc[]. The functiondestroyValueArray() frees memory pointed to byp
previously obtained bymakeValueArray().

DISCUSSION
The state of a QNET program is determined by the number of jobs in each of the classes (or queues) used
by the program.The state space is anndim-dimensional space that is indexed by the number of jobs in
each class.For example, if there are two classes and the first class has 5 jobs and the second class has 2
jobs then the ordered pair (5,2) completely specifies a state. In this case the state space is two-dimensional
and the value ofndim would be 2.

Each state has anaction associated with it that indicates which classes each of the servers will work on. A
policy is the entire collection of actions for all states.This means that a policy contains the complete infor-
mation about which class each server serves for every possible state of the system.For example, in a sys-
tem with three classes and two servers the action for state (3,2,5) might be (1,3) which indicates that the
first server works on class 1 while the second server works on class 3. This means that policy data is
indexed by state and a multidimensional array is the appropriate structure to hold this information.

As QNET programs run they compute differential cost data. Each state in the system has one or morecost
values associated with it and this data is stored in a multidimensional array indexed by state, just as the pol-
icy data is.

In C++ array indices start with 0 and so a 5-element array has indices 0 through 4.The convention in
QNET programs is to describe the state space by the largest values each class can have, which in turns
means the largest index that can be used. This means that QNET state space described bytruncation val-
ues of 30, 30, and 30 is three-dimensional with indices in each dimension having values of 0 through 30
inclusive. The C++ array to hold this data should be 31 by 31 by 31.

If there is more than one server then there will be more than one action for each state and so one additional
array dimension in the policy array is required.Similarly, if there is more than one cost value per state then
an additional array dimension in the value array is required. While the functions described here can handle
this, the user should cast pointers returned bymakePolicyArray() andmakeValueArray() appropriately.

RETURN VALUE
The allocation functions each return a pointer that must be cast to a pointer of appropriate level of indirec-
tion (dimension). In the case of policy data the level of indirection should bendim if the number of servers
nsrv=1 but should be increased by one ifnsrv>1. Similarly, in the case of cost value data the level of

1

MAKEARRAYS(3) MAKEARRAYS(3)

indirection should bendim if nval=1 but should bendim+1 if nval>1. Thedeallocation functions do not
return any value.

EXAMPLE
Suppose a model has three classes and two servers and that the truncation values for the classes are 10, 20,
and 20. Following the QNET convention that N[0] is not used (so N[1] is the truncation value for the first
dimension), policy and value arrays for this situation can be allocated with

int N[] = {0, 10, 20, 20};
int**** action = (int****) makePolicyArray(3, 2, &N[1]);
double*** h = (double***) makeValueArray(3, 1, &N[1]);

Now consider the state x1=5, x2=2, x3=8 (the three queues each have 5, 2, and 8 jobs in them respectively).
After these declarations, action[5][2][8] is a two-element array that can hold the policy data for the state
(5,2,8); action[5][2][8][0] is the location for the first server’s action and action[5][2][8][1] is the location
for the second server’s action. Noticethat the references action[10][20][20][0] and action[10][20][20][1]
are both valid. Thedifferential cost value data can be stored in the array h; the value data for the example
state can be referenced with h[5][2][8].

The memory allocated for the policy and value arrays can be returned to the system with the commands

destroyPolicyArray(action, 3, 2, &N[1]);
destroyValueArray(h, 3, 1, &N[1]);

AUTHOR
Copyright © 2007 Jonathan R. Senning, Department of Mathematics and Computer Science, Gordon Col-
lege, 255 Grapevine Road, Wenham MA, 01984.

2

