
SPNETWORK(3) QNETProgrammer’s Manual SPNETWORK(3)

NAME
Class SPNetwork − An interface for reading in and using data found in the stochastic processing network
(and all subsets of the Stochastic Processing Network) input file.

SYNOPSIS
#include<SPNetwork.h>

struct MatrixEntry;
{

int i;
int j;
double val;

}

SPNetwork(const string filename);
SPNetwork(TaggedValues& input);
SPNetwork(const SPNetwork& copyee);

void printNetwork();
bool usesProbRouting();
bool usesDetRouting();
bool usingPools();
bool isStochastic();
int getClasses();
int getServers();
double getTotalEventRate();
double* getArrivalRates();
double* getHoldingCosts();
int* getServerForClass();
int* getserverPoolSizes();
int* getSuccessors();
bool* getNonidling();
MatrixEntry* getServiceRates(int& size);
int getServiceRateLength();
MatrixEntry* getRoutingProbabilities(int& size);
int getRoutingProbLength();
bool isFeasible(int** u);
bool isStateFeasible(int** u, int x[]);
std::vector<int**> getFeasibleActions()

DESCRIPTION
Provides a consistent interface through which to read network input files describing Stochastic Processing
Networks (thus: SPNetwork), and allows access to the data within the files. Can calculate feasible actions
(which are network−dependent) and determine if a given action/state pair is feasible.

There are only two constructors. Oneallows programmers to simply specify the filename from which they
plan on reading the network, the other takes a reference to aTaggedValues and allows the programmer to
access values other than those needed bySPNetwork through theTaggedValues interface.

The structMatrixEntry is an important part ofSPNetwork and is public because the interface is needed to
be able to access the elements of the routing probability matrix and the service rate matrix.Both matrices
are sparse, and soMatrixEntry allows the program to iterate over ONLY the non-zero elements of either
matrix. This usually cuts down on the programs’ runtimes.

MatrixEntry.i andMatrixEntry.j are indices into a matrix andMatrixEntry.val is the value at that loca-
tion. For example:

SPNetwork 1.0 2009-01-12 1

SPNETWORK(3) QNETProgrammer’s Manual SPNETWORK(3)

MatrixEntry xij;
xij.i = 1;
xij.j = 3;
xij.val = 3.14;

creates a single entry in a matrix that represents the data given by the following assignmentx[i][j] =
3.14; It is assumed that all indices which do not have MatrixEntrys hav ea value of zero. For more on
using theMatrixEntry struct see the examples below.

printNetwork() does just what its name suggests. Calling this will print out a summary of the information
gathered and stored bySPNetwork.

The methods returning booleans:usesProbRouting(), usesDetRouting(), usingPools(), andisStochastic(),
return values determined while building the object and so provide instant access to facts about the network.

The methodsgetClasses() and,getServers() return the number of classes and servers that are part of the
network. Theseserve as the lengths of most of the arrays returned by other acecssors.The values are those
read in from the input file, either by this class or by theTaggedValues class.

getArrivalRates(), getHoldingCosts(), getServerPoolSizes(), getSuccessors(), getServiceRates(int&
size) and,getRoutingProbabilities(int& size) all return the information described by their names.Note:
getServiceRates and getRoutingProbabilities return MatrixEntry arrays instead of doubly indexed
arrays. Becauseonly non-zero entries in these matrices are recorded, the size variable is passed in, and
before returning is changed to match the length of theMatrixEntry array. (Therefore: index these arrays
from 0-->[size-1]). getSuccessors() will f ail if called on a network defined with probabilities instead of
successors (see SPNetwork.5 for more details on defining input files).

getServiceRateLength() and, getRoutingProbLength() are accessors for the number of non-zeroes in
their respective matrices in case you need access to the size of the matrix somewhere where the size vari-
able initially passed intoget...(int& size) is out of scope.

getTotalEventRate() is calculated from the above data. It is equal to the sum of the maximum service
rates for each server. getServerForClass() is also a derived attribute. Dependenton mu, this will return
the server responsible for the class you subscript it by. For example in a series-2 line it would return (1,2).
In a Rybko-Stolyar network it would return (1,2,2,1).getServerForClass() will fail if called on a network
in which any class can be served by more than one server.

Finally, getNonidling() is a boolean array which allows access to the booleans which are true if that class is
not allowed to idle unless it has no jobs available to it.

Besides the above functions there are three functions which are designed to make iterating over all the pos-
sible actions and states easier. The functionisFeasible(int** u) allows you to pick an action and then check
if it is feasible or not based on the network. isStateFeasible(int** u, int x[]) checks to see whether a partic-
ular action/state combination is possible.VERY importantly, these functions require the actions to have
been allocated using the functionallocateArray() (allocateArray(3)). Finally, getFeasibleActions()
returns a vector of all the possible actions so that code needs to calculate which ones are possible only once.
This also allows code to be much cleaner because it keeps the complicated feasiblity tests encapsulated.
Non-idling classes are not considered in determining feasibility.

EXAMPLES
MatrixEntry is an important class to use. The following show two different ways of multiplying mu (the
completion rates) by its corresponding u (action):

//Allocation and assignment of u
...
//Allocation and assignment of mu
...
double sumUTimesMu = 0.0;
for(int i = 0; i <= numberOfServers; i++)
{

SPNetwork 1.0 2009-01-12 2

SPNETWORK(3) QNETProgrammer’s Manual SPNETWORK(3)

for(int j = 0; j <= numberOfClasses; j++)
{

sumUTimesMu += u[i] * mu[i];
}

}

As you can see, this could waste a lot of time, especially if the number of servers and classes is relatively
large. Thefollowing does the same job, but uses the sparce matrix:

//Allocation and assignment of u
...
//Initialization of SPNetwork with "iniFileName" (a string)
SPNetwork network(iniFileName);

//Allocation and assignment of sparce mu using MatrixEntry:
int muSize = 0;
MatrixEntry* mu = network.getServiceRates(muSize);

//Now muSize is set to the number of entries within sparceMu
double sumUTimesMu = 0.0;
for(int n = 0; n <= muSize; n++)
{

sumUTimesMu += mu[n].val * u[mu[n].i][mu[n].j];
}

While it is much more cumbersome to useMatrixEntry it makes sparse matrices take up a lot less time to
iterate over and occupy less space in memory.

isFeasible(int** u) also deserves a moment of explanation. Ifyou produce a policy array (sized: numebr of
servers by number of classes) you can hand it to this method which will check to make sure it’s leg al for
this network.

SEE ALSO
SPNetwork.5

AUTHOR
The class described here was originally implemented by Christopher Pfohl in 2009.It has been modified
and improved by Dr. Jonathan Senning.

Copyright © 2009 Christopher W. Pfohl, Department of Mathematics and Computer Science, Gordon Col-
lege, 255 Grapevine Road, Wenham MA, 01984

SPNetwork 1.0 2009-01-12 3

