
ALPSdata(3) QNETProgrammer’s Manual ALPSdata(3)

NAME
Class ALPSdata − Constructs an object that has three instance variable vectors that hold the following:
problem description input data, parameter solutions from an ALP program, and any user-defined functions
that may have been used in the ALP. An object can write the information to disk in the form of a specifi-
cally formatted .alps file. An object can also be instantiated from an existing .alps file and can return each
of the three components.

SYNOPSIS
#include <iostream>
#include <fstream>
#include <ALPSdata.h>

ALPSdata();
ALPSdata(const std::string alpsFile);
ALPSdata(std::vector<std::string> inputData,

std::vector<std::string> paramData);
ALPSdata(std::vector<std::string> inputData,

std::vector<std::string> paramData);
std::vector<std::string> functionData);

ALPSdata(std::vector<std::string> inputData,
std::vector<std::string> paramData);
std::string functionDataFile);

ALPSdata(std::vector<std::string> inputData, int numCoef,
double var[] , std::vector<char*> name, double obj);

ALPSdata(std::vector<std::string> inputData, int numCoef,
double var[] , std::vector<char*> name, double obj,
std::vector<std::string> functionData);

ALPSdata(std::vector<std::string> inputData, int numCoef,
double var[] , std::vector<char*> name, double obj,
std::string functionFileName);

void setInput(const std::string inputDataFile);
void setInput(const std::vector<std::string> inputData);
void setALPSolution(const std::string paramDataFile);
void setALPSolution(const std::vector<std::string> paramData);
void setBasisInfo(const std::string functionDataFile);
void setBasisInfo(const std::vector<std::string> functionData);
std::vector<std::string> getInput();
std::vector<std::string> getALPSolution();
std::vector<std::string> getBasisInfo();
void writeALPSFile(std::string fileName);
void writeBasisInfoFile(std::string fileName);

DESCRIPTION
Provides an interface for the user to create and access structured .alps solution files, which contain problem
description input parameters, coefficient parameter solutions, and user-defined functions. There are many
constructors and methods to allow easy creation of new and access of previous .alps files. This class, used
in conjuction with the TaggedValues class, can allow for versatile storage, access, and manipulation of data.

There are eightALPSdata() constructors for the object. The first creates an empty object with no data.

The second takes one parameter, the path for a previous .alps file, with which the object will populate its
input, parameter, and function vectors.

The third takes two vector parameters. The first is a vector of strings which represent the input data.The
second is a vector of strings which represent the parameters solutions.This constructor is useful when the

ALPSdata 1.0 2009-06-12 1

ALPSdata(3) QNETProgrammer’s Manual ALPSdata(3)

user did not use any user-defined functions.

The fourth constructor is the same as the third except that there is a third parameter, a vector of strings rep-
resenting the user-defined basis functions.

The fifth constructor is the same as the fourth with one difference being that the third parameter, the user-
defined functions, is a file path in the form of a string, not a vector of strings.

The final three constructors mimic the preceding three except that that are passed the raw ALP solution
parameter information. The new parameters are:numCoef- the number of coefficients in the ALP solution
(same as the number of basis functions),var[] - the array of coefficient values,name- a vector of character
strings holding the variable names, andobj - the objective value.

ThesetInput(), setALPSolution(), and setBasisInfo() methods are all very similar. There are two versions
of each. One version is to provide the data as a vector of strings, and the second provides a string path to a
file which contains the data.

The getInput(), getALPSolution(), and getBasisInfo() are also similar. They return their respective data
in the form of a vector of strings.

writeALPSFile() takes one parameter, a file path, and writes the data currently stored in the class to the file
path on the disk with the provided name.

writeBasisInfoFile() also takes one parameter, a file path, and writes the user-defined function data that is
currently stored to a file on disk with the given name. Thismethod can be used when compiling a shared
object to be used with an ALP program.

Files written to disk with the two previous methods overwrite any already existing files with the provided
names.

SEE ALSO
TaggedValues(3), ALPSdata(5)

AUTHOR
The class documented here was written by Taylor Carr and Jonathan Senning, who also wrote the manual
page. Copyright © 2009 Department of Mathematics and Computer Science, Gordon College, 255
Grapevine Raod, Wenham MA, 01984.

ALPSdata 1.0 2009-06-12 2

